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Abstract. In this article, we develop a new method to prove both global propagation of analyticity
and unique continuation in finite time for solutions of semilinear wave-type equations with analytic
nonlinearity. It combines control theory techniques and Galerkin approximation, inspired by Hale-
Raugel [HR03], to prove that analyticity in time can be propagated for the nonlinear equation from
a zone where linear observability holds towards the full space.

For semilinear wave equations with Dirichlet boundary condition on a bounded domain, this
implies that analyticity can be propagated to the entire domain from a subset ω that satisfies the
geometric control condition. It also implies the unique continuation when the solution is assumed
to be zero on ω. When the nonlinearity is assumed to be subcritical and defocusing, we also obtain
observability estimates in the optimal time of the geometric control condition.

For semilinear plate equations, similar propagation of analyticity is achieved by assuming the
controllability of the linear Schrödinger equation.
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1. Introduction and main results

The aim of this article is to study how, for a certain class of evolution PDEs, properties observed
from a subset ω ⊂ M through time (0, T ) are propagated to the whole solution on (0, T ) × M.
Here, M can be, for instance, a compact Riemannian manifold with boundary. More precisely, we
will study the following three properties:

(1) Propagation of analyticity: if the solution is analytic in time on (0, T ) × ω, is the full
solution analytic in time on (0, T ) ×M?

(2) Unique continuation: if the solution is zero on [0, T ] × ω, is the solution identically zero
in [0, T ] ×M?

(3) Observability inequality: can we quantify the previous unique continuation property?

The method that we develop is quite general for conservative equations and relies on observability
estimates. In this paper, we will mainly give applications to nonlinear wave and nonlinear plate
equations. We also provide an abstract result. We believe that it could be applied to several other
systems and is amenable to generalizations. We begin by describing the results for nonlinear wave
equations.

1.1. Main results on semilinear wave equation. In this section we consider the semilinear
wave equation  ∂2t u− ∆gu+ f(u) = 0 (t, x) ∈ [0, T ] × Int(M),

u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
(u, ∂tu)(0) = (u0, u1) x ∈ M,

(1.1)

where (M, g) is a smooth compact connected Riemannian manifold with boundary of dimension
d less or equal to 31 and ∆g is the Laplace-Beltrami operator equipped with Dirichlet boundary
conditions. The nonlinearity f : R → R is assumed to be analytic and to satisfy f(0) = 0.

We will make two kinds of assumptions concerning the regularity and the nonlinearity:

(1) if there is no more assumption, we will choose the regularity index σ ∈ (1/2, 1] if d = 3 and
σ ∈ (0, 1/2) if d ≤ 2 to ensure H1+σ ↪→ L∞.

(2) f is energy subcritical: f is assumed to be of polynomial type, in the sense that there exists
C > 0 such that

|f(s)| ≤ C(1 + |s|)p and |f ′(s)| ≤ C(1 + |s|)p−1, (1.2)

with 1 ≤ p < +∞ if d ≤ 2 and 1 ≤ p < 5 for d = 3. In that case, we choose σ = 0 in what
follows, corresponding to finite energy solutions.

The observation set ω ⊂ M will also always be assumed to be open. A key hypothesis will be
that ω satisfies the Geometric Control Condition at time T > 0:

Assumption GCC. Every generalized geodesic of M traveling at speed 1 meets ω in time t ∈ (0, T ).

1The restriction on the dimension is technical. The same results would likely hold in any dimension. One might
modify the definition of subcriticality and require f (k)(0) = 0 for 0 ≤ k ≤ kd with kd chosen so that f sends H1+σ

D

to Hσ
D for 1 + σ > d/2. Here, Hσ

D is the Sobolev space adapted to the Laplace operator with Dirichlet boundary
conditions.
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We will always assume that the Hamiltonian vector field of the wave operator does not have
contact of infinite order with ∂M (see [MS78]). This ensures that the broken bicharacteristic flow
is uniquely defined. We refer to Section A.3 for details and references.

Our first main result concerns the propagation of analyticity in time.

Theorem 1.1. Let σ ∈ (1/2, 1] if d = 3 and σ ∈ (0, 1/2) if d ≤ 2. Let (u, ∂tu) ∈ C0([0, T ], H1+σ ∩
H1

0 × Hσ
0 (M)) be a solution of (1.1). Assume that the above setting holds and assume moreover

that:

(1) (ω, T ) satisfies the GCC.
(2) t ∈ (0, T ) 7→ χu(t, ·) ∈ H1+σ(M) ∩H1

0 (M) is analytic for any cutoff function χ ∈ C∞
c (M)

whose support is contained in ω.
(3) s 7→ f(s) is real analytic.

Then t 7→ u(t, ·) is analytic from (0, T ) to H2(M) ∩H1
0 (M).

Note that, once the solution is known to be analytic in time, it is possible to get more regularity
in space. For instance, this occurs when the metric is analytic.

Corollary 1.2. Under the same assumptions as before, if, moreover, the metric and the boundary
are analytic in x, then u is analytic in all variables.

Note that the second assumption is written as an analyticity with a Banach valued application, see

Section A.2, but it can be satisfied if we have, for instance, the pointwise estimates |∂αt ∂
β
xu(t, x)| ≤

CR|α|α! for (t, x) ∈ (0, T ) × ω, α ∈ N, |β| ≤ 2 together with the Dirichlet boundary condition.
These propagation results have applications to unique continuation problems. For this property,

the shape of the nonlinearity dictates what type of equilibrium we will obtain.

Theorem 1.3. (Unique continuation) Assume that (ω, T ) satisfies the GCC and that f is energy
subcritical and real analytic. If one solution U = (u, ∂tu) ∈ C0([0, T ], H1

0 × L2(M)) with finite
Strichartz norms 2 of (1.1) satisfies ∂tu = 0 in [0, T ] × ω, then ∂tu = 0 in [0, T ] ×M and u is an
equilibrium point of (1.1), that is, solution of{

−∆gu+ f(u) = 0 x ∈ Int(M),
u = 0 x ∈ ∂M.

(1.3)

If, moreover, the nonlinearity satisfies

sf(s) ≥ 0 if ∂M ≠ ∅, (1.4)

sf(s) ≥ γs2 if ∂M = ∅,
for some γ > 0 and for all s ∈ R, then u ≡ 0.

Note that when unique continuation is not possible, we can still establish a result of finite deter-
mining modes, see Proposition 3.10. In the first part of the theorem, f can be focusing. Therefore,
(1.1) is not always globally well-posed and can lead to blow-up, that is why we make the a priori as-
sumption of boundedness. In the case of defocusing nonlinearity, we are able to prove a quantitative
version of the unique continuation, namely, an observability inequality.

Theorem 1.4. Assume that (ω, T ) satisfies the GCC. Assume that f is analytic, energy subcritical
and defocusing, that is, satisfying (1.2), and (1.4). Then, for any R0 > 0, there exists C > 0 so
that for any (u0, u1) ∈ H1

0 × L2(M), with ∥(u0, u1)∥H1
0×L2 ≤ R0, the unique solution of (1.1) with

finite Strichartz norms satisfies

C∥(u0, u1)∥2H1
0 (M)×L2(M) ≤

∫ T

0
∥1ω∂tu(t)∥2L2(M)dt. (1.5)

2That means one of the admissible Strichartz exponent ensuring uniqueness is finite. We refer to Theorem 3.3 for
more precisions.
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For linear equations, this is the typical observability estimate of [BLR92] that is equivalent to
the controllability. Here, however, it is obtained for nonlinear equations. This type of inequality
already appeared in the literature, often associated with stabilization results, but under stronger
assumptions on ω and T to ensure unique continuation. Indeed, the stabilization property for the
damped equation is often proved thanks to an observability inequality as (1.5). This topic has been
studied extensively; for instance, see [Har85], [Zua91] and [Deh01] for p < 3, and for p ∈ [3, 5), our
main reference is the work of Dehman, Lebeau and Zuazua [DLZ03]. This work mainly addressed
the stabilization problem previously described, in the Euclidean space R3 with flat metric and active
damping outside of a ball, or on a bounded domain, but with damping close to the full boundary.

Our main purpose here is to extend observability to more general geometries where multiplier
methods cannot be used or do not yield optimal results with respect to the geometry and optimal
time. Other stabilization results for the nonlinear wave equation can be found in [AIN11] or [Per24],
as well as the references therein. Some articles have addressed the more difficult critical case
p = 5; see [Lau11] for details. An observability estimate similar to (1.5) was also obtained by
Joly and the first author in [JL13] under the same Geometric Control Condition, but with a non-
uniform time depending on the size of the initial data R0. Their proof relied on some asymptotic
regularization result of Hale-Raugel [HR03]. Our scheme of proof here is inspired by their work,
with the substantial modification that we always work in finite time, which requires adapting the
original method.

We should also notice that, although the results of [DLZ03] concern a specific geometry, by
following their proof carefully, we can extract a rough statement of the type:

“geometric control condition” + “unique continuation” =⇒ “observability”.

Therefore, our proof will follow that line and will mainly focus on the unique continuation property.

Note that we have assumed from the beginning that M is compact. Yet, several results in
unbounded domains can be deduced from our result. We can, for example, get similar results for a
compact perturbation of R3.

Proposition 1.5. Let Ω = R3\O where O is a bounded smooth domain (not necessarily connected).
Assume that there exists R > 0 so that R3 \ B(0, R) ⊂ ω and that (ω, T ) satisfies GCC. Then, the
same conclusion as Theorem 1.3 holds.

The proof of the previous results are consequences of abstract results described in Section 1.3.
Our methods are inspired by Dynamical Systems techniques from Hale-Raugel [HR03], originally
designed to study the regularity of ”ancient solutions” for dissipative systems. It was noted in [JL13]
that such results could imply a unique continuation property with Geometric Control Condition on
ω, although, in infinite time or depending on the size of the data. To achieve finite-time results,
the method has to be modified. The main idea in this article is to rely on observability properties
instead of the decay of semigroup. This approach enables us to obtain some propagation results in
finite time for solutions with zero observation. Additionally, the method is flexible enough to allow
some source terms, leading to a full propagation result with optimal assumption on ω and the time
T , from an observation analytic in time. For more details, we refer to Section 1.3.

Literature overview on unique continuation and propagation. Let us now review some already known
results and why our unique continuation result seems difficult to obtain from the already known
methods and results in the literature. We also refer, for instance, to the survey [LL23] and the
reference therein that contains an introduction to the unique continuation for wave type operators.
For a more complete treatment of Carleman estimates and unique continuation, we also refer to
[Ler19].

One initial approach for proving Theorem 1.3 could involve using the general theory of unique
continuation of Hörmander [H6̈3]. In that context, this would require considering the nonlinearity
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f(u) as a potential term V u where V has, at most, the same regularity as u. Achieving global
unique continuation would then require iterating some local unique continuation results across a
hypersurface {Ψ = 0}. Yet, for a general configuration, the global geometric assumptions resulting
from the use of Hörmander theorem for the unique continuation are not very natural and are stronger
than GCC. For instance, for a flat metric, the pseudoconvexity condition of a hypersurface {Ψ = 0}
for the wave operator writes

X2
t = |Xx|2 and dΨ(x0)(X) = 0 =⇒ HessΨ(x0)(X,X) > 0 for all X = (Xt, Xx) ∈ R1+d \ {0}.

and imply a kind of convexity of the hypersurface. Typical geometric assumptions are often of
”multiplier type” (or Morawetz type), meaning ω is a neighborhood of {x ∈ ∂Ω |(x− x0) · n(x) > 0}
which are known to be stronger than the geometric control condition (see [Mil03] for a discussion
about the links between these assumptions). Moreover, on curved spaces, this type of condition often
needs to be checked by hand in each situation, which is mostly impossible in general. Additionally,
concerning the unique continuation with even smooth V , the classical counterexamples of Alinhac-
Bahouendi [AB95], refined by Hörmander [Hör00], are quite striking. They show that Hörmander’s
pseudoconvexity condition is not far from being optimal for local unique continuation. For any
s > 1 and d ≥ 2, they construct some u and V ∈ Gs(BR1+d(0, 1),C) (Gevrey functions) so that

∂2t u− ∆u = V u on BR1+d(0, 1),

supp(u) = {(t, x1, . . . , xd) | x1 ≥ 0} ∩BR1+d(0, 1).

This suggests that in geometrical situations where the strong pseudoconvexity of the hypersurface
is not satisfied, we cannot expect local unique continuation for potential a V that is not analytic.

Note that quite surprisingly, even in 1-dimensional linear hyperbolic systems of order 1, a similar
dichotomy seems to exist. It has been shown in this context by Coron-Nguyen [CN21] that for time-
dependent coupling matrices, it is possible to construct counterexamples to unique continuation at
some natural time while the property is true for coupling depending analytically on time.

Another counterexample that undermines a possible strategy to prove unique continuation in
Theorem 1.3 is provided by Métivier in [Mét93]. He proved that a nonlinear version of the Holmgren
theorem fails in general. The operators for which it applies are not wave operators, but a nonlinear
Holmgren theorem, even for a more specific class of operators has, up to our knowledge, never been
obtained so far, except for scalar operators of order 1.

Regarding the propagation of analyticity for nonlinear equations, several results date back to the
1980s and 1990s. Alinhac-Métivier proved in [AM84a, AM84b] that if u is a regular enough solution
of a general nonlinear PDE, the analyticity of u propagates along any hypersurface for which the
real characteristics of the linearized operator cross the hypersurface transversally. Subsequently,
there has been an intense activity to understand what kind of singularities propagate for nonlinear
waves. It was found that the situation is quite complicated since microlocal analytic singularities
do not remain confined to bicharacteristics as in the linear case, but can give rise to nonlinear
interactions. For more details, see Godin [God86] and Gérard [Gér88].

Yet, in our geometric context, obtaining a global result from local propagation of singularities
typically involves propagation from hypersurfaces of the form S = {ψ = 0} with ψ(t, x) = ψ(x). In
such cases, the operator is never hyperbolic with respect to S, and there can be some bicharacteristics
transverse to S as soon as d ≥ 2. In particular, the results from [AM84a, AM84b] do not seem to
apply.

The problem is better understood in the C∞ or Hs context. For the linear equation, the prop-
agation of Hs regularity along rays for the Dirichlet problem is well understood since the work of
Melrose-Sjöstrand [MS78]; see [H0̈7] for a complete historical overview on the internal and boundary
problem. Concerning the Hs regularity of nonlinear equations, the microlocal propagation has been
the object of several studies since the work of Bony [Bon81]. The global propagation from a set
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satisfying GCC is proved in [DLZ03] using a bootstrap argument and propagation of Hs regularity
for smoother source terms. It is unclear how to adapt such arguments in the analytic context. Even
in the linear case f = 0, local propagation of analytic regularity can be quite complicated, especially
for glancing rays; see [RS81] for details. The propagation of analyticity that we prove may also
be of interest in this context. It seems that, to achieve global propagation of analytic regularity
using the propagation of the wavefront set, one would need to take into account analytic rays. They
include rays arriving at the boundary in a glancing direction and potentially staying ”stuck” at the
boundary for a certain amount of time, even at diffractive points. It is uncertain to us whether the
global propagation result can be obtained under the same assumptions using this analysis for the
linear case.

Beyond Hörmander’s general result [H6̈3] under pseudoconvexity, unique continuation for wave-
type operators have been extensively studied. While it is impossible to cover them all here, we aim
to present the variety of results and motivations that appear. A more precise historical overview
can be found in [LL23, Section 4].

We begin with the unique continuation with partial analyticity, which will be crucial for obtaining
Theorem 1.3 from Theorem 1.1, see Section 3.4.2. The history of this theory is quite long, with
several breakthroughs and improvements that we do not detail here (see [LL23, Section 4]). The
proof of local uniqueness results across any noncharacteristic hypersurface for ∂2t −∆g was achieved
by Tataru in [Tat95], leading to the global unique continuation result in optimal time. Tataru’s
result is not restricted to the wave operator; it holds for operators with coefficients that are analytic
in part of the variables, interpolating between Holmgren’s theorem and the Hörmander’s theo-
rem. Technical assumptions of this article were successively removed by Robbiano-Zuily [RZ98],
Hörmander [Hör97] and Tataru [Tat99], leading to a very general local unique continuation result
for operators with partially analytic coefficients (including as particular cases both Holmgren’s and
Hörmander’s theorems). This result (or some globalized version of it) will be used in our context;
see Theorem 3.13 below. The key point in applying these results, which are linear, is that the
coefficients need to be analytic in time. When applying this to nonlinear solutions such as (1.1), the
nonlinearity f(u) must be seen as a term V u with V having the same regularity as u. This is why
the propagation of analyticity in Theorem 1.1 is crucial in order to apply this unique continuation
result.

In regards to classical Carleman estimates, many authors explored the global assumptions needed
to obtain them, as well as their consequences. Global Carleman estimates for waves were proved
in [FI96, Chapter 4] and [BDBE13] with applications to controllability and inverse problems. An-
other line of investigations in a geometric context was taken in [DZZ08, Sha19, JS21] to present
geometric assumptions that would ensure the usual pseudoconvexity, with applications to observ-
ability estimates and null-controllability.

For treating nonlinear problems, admitting lower-order terms in unique continuation results is
crucial. For instance, in the present work, a nonlinearity of the form f(u) is treated as a term V u
with potential V . Here, a previous analysis allows to obtain that the nonlinear solution is actually
very regular. Yet, having nonlinear problems in mind, it has sometimes been a goal to minimize the
regularity of the admissible lower-order terms. A global unique continuation statement was proved
in [Rui92], with application to energy decay for nonlinear waves. This led to some “dispersive”
Carleman estimates with Strichartz-type spaces. The literature is vast, and we refer, for instance,
to [KRS87, DSF05, KT05], and the references therein.

Unique continuation problems for wave operators also arise from mathematical general relativity.
They have recently received a lot of attention, specifically in the context of the rigidity problem for
stationary black holes. We refer to [IK15] for a precise overview of the problem and recent progress.
Note also that the rigidity of stationary black holes is already known under the assumption of
analyticity. So, obtaining some propagation of analyticity could be of great interest in this context.
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1.2. Main results on semilinear plate equations. As mentioned earlier, the results we obtain
for the wave follow from more a general method and abstract framework that could apply to many
other systems. Firstly, the result could be extended to systems of waves with the same leading
order terms but coupled by lower order terms, provided that the observation is made across all
components. Additionally, we present a first application to nonlinear plate equations, focusing
solely on the propagation of analyticity. However, this could represent a first step towards unique
continuation in a more general setting.

Theorem 1.6. Let (M, g) be a compact connected manifold with (or without) boundary of dimension

d ≤ 3. Let 0 < T < T̃ and ω ⋐ ω̃ two open subsets of M so that the Schrödinger equation is
observable in L2 from ω in time T (see Section 4.3.1 below for more precisions and examples).
Assume that f is real analytic with f(0) = 0. Let (u, ∂tu) ∈ C0([0, T ], H2 ∩H1

0 × L2) be a solution
of {

∂2t u+ ∆2u+ f(u) = 0 (t, x) ∈ [0, T ] ×M,
u|∂M = ∆u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,

(1.6)

so that for any cutoff function χ ∈ C∞
c (M) whose support is contained in ω̃, then t ∈ (0, T ) 7→

χu(t, ·) ∈ H3+ε(M) ∩ H1
0 (M) is analytic for one ε > 0. Then t ∈ (0, T ) 7→

(
u(t, ·), ∂tu(t, ·)

)
∈

H4 ∩H1
0 ×H2 ∩H1

0 is analytic.

Note that the condition ∆u|∂M = 0 which does not make sense at this level of regularity is meant
as an extension of the related semigroup. The nonlinear equation (1.6) is meant in the sense of the
Duhamel formula.

The sharp geometric condition on ω necessary for the observability of the Schrödinger equation
remains an open question. Yet, it has been the object of many investigations. In the following
situations, the observability of the Schrödinger equation is known, thereby allowing us to apply the
previous theorem:

(1) (M, g) is a compact Riemannian manifold with or without boundary and ω satisfies the
GCC. See Lebeau [Leb92].

(2) (M, g) = ((0, 1)d,Euclid) with d ≤ 3, ω is any nonempty open set. This was first proved by
Jaffard for d = 2 and Komornik [Kom92] for other dimensions (actually directly for the beam
equation). Other proofs have also been given later by Burq-Zworski [BZ04], Anantharaman-
Macià [AM14]. Note here that the proofs are given for the torus Td, but an easy argument
of symmetrization allows to recover the same result for the Dirichlet boundary condition.

(3) (M, g) = (D,Euclid) is the Euclidean closed disk in R2 and ω∩∂M ≠ ∅. See Anantharaman,
Léautaud, Macià [ALM16, Theorem 1.2],

(4) (M, g) is a compact, boundaryless connected Riemannian surface whose flow has the Anosov
property, ω is any nonempty open set. See Dyatlov-Jin-Nonnenmacher [DJN22, Theorem
5].

(5) (M, g) is a compact, boundaryless Riemannian manifold of dimension d and constant cur-
vature ≡ −1, and the observation Cψ = aψ is made through a smooth function a on M such
that the set {ρ ∈ S∗M | a2(ϕt(ρ)) = 0, ∀t ∈ R} has Hausdorff dimension < d. Here ϕt is
the bicharacteristic flow on T ∗M. See Anantharaman-Rivière [AR12, Theorem 2.5].

We also provide an abstract result following Lebeau [Leb92], establishing a connection between the
observability of the Schrödinger equation and the plate equation.

We expect that the unique continuation for the situation in Theorem 1.6 is true. Yet, we would
need the unique continuation for the plate equation with lower order coefficients analytic in time.
It is very likely to be true, but is not yet proved. We refer to [Tat99, RZ98, Hör97] in analytic
regularity and [FLL24] in Gevrey spaces for the closely related Schrödinger equation.
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Systems of nonlinear plate equations as (1.6) have been considered by Eller-Toundykov [ET15]
for d = 2 with M a bounded open subset of R2, where they have addressed the question of (semi-
global) exact controllability for such system. It is known that establishing a unique continuation
property for PDEs is a crucial step to achieve controllability results. They proved using Carleman
estimates that unique continuation holds for (4.1), when ω is a subset of a collar neighborhood of
the boundary ∂M (namely, a multiplier-type condition) and without an analyticity assumption on
the coefficients, see [ET15, Lemma 4.1]. We also refer to some recent results on nonlinear plates due
to Bournissou-Ervedoza-Tucsnak [TBE24], where they show that the nonlinear system described by
the von Kármán plate equation is locally exactly controllable around any stationary state defined
by a real analytic function.

Remark 1.1. Actually, in [ET15], more general models than the one presented here have been
considered. However, it was stressed by the authors that the study of (1.6) presents a stepping stone
to a further study of control-related questions for systems with even more complicated nonlinearities.

1.3. An abstract result. Even though we have presented several results related to the semilinear
wave and plate equations, at the core of all of them lies an abstract result. This result essen-
tially states that solutions to a nonlinear problem, with a skew-adjoint linear part, and a compact
nonlinearity which is also analytic, are analytic in time, provided that the observed solution is zero.

We first need to introduce some notation and assumptions in order to state the aforementioned
result. Let T > 0 and let us consider the nonlinear observability system{

∂tU = AU + F (U +H1) +H2, t ∈ (0, T ),
CU(t) = 0, t ∈ (0, T ),

(1.7)

on a suitable real Hilbert space X, where A is a skew-adjoint operator on X, F is a mapping on
X, H1 and H2 are some parameters, and C is a bounded observation operator in X. The first
assumption dictates the class of PDEs we will be working with.

Assumption 1. A is a skew-adjoint operator with domain D(A) on a real separable Hilbert space
X, so that A∗A = −A2 has a compact resolvent.

This assumption allows us to introduce Xσ as the interpolation space in between D(A) and X for
σ ∈ [0, 1], with X0 = X and X1 = D(A). From now on, we will work at a fixed level of regularity,
for which we fix σ ∈ [0, 1] and instead consider (1.7) in Xσ. We will need to exert some control
on the linear semigroup t ∈ [0, T ] 7→ eAt ∈ L(Xσ) generated by A and even more, we will need
some extra control at a slightly higher regularity. This will be accomplished through the following
assumption.

Assumption 2. Let C ∈ L(Xσ, Xσ) be an observation operator. We assume that t 7→ etA is
observable on [0, T ], namely, there exists a constant Cobs > 0 such that

∥W0∥2Xσ ≤ C2
obs

∫ T

0
∥CetAW0∥2Xσdt, ∀W0 ∈ Xσ. (1.8)

Furthermore, we assume that C ∈ L(Xσ+ε, Xσ+ε) for some ε > 0 and that there exists (another)
constant Cobs > 0 such that

∥W0∥2Xσ+ε ≤ C2
obs

∫ T

0
∥CetAW0∥2Xσ+εdt, ∀W0 ∈ Xσ+ε. (1.9)

We now make the last assumption regarding the nonlinearity. For a given real Banach space Y ,
we denote the ball centered at 0 of radius M by

BM (Y ) := {y ∈ Y | ∥y∥Y ≤M}.
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For a given interval I ⊂ R, we denote the ball of radius M of C0([0, T ], Y ) by

BI
M (Y ) = {U ∈ C0([0, T ], Y ) | ∀t ∈ I, ∥U(t)∥Y ≤M},

Moreover, we introduce the canonical complexification YC, defined as the set of elements y1 + iy2,
yj ∈ Y , see [BS71b, Section 2] for more details. We then introduce the notation for the cylinder on
YC

BM,δ(Y ) = {y ∈ YC | ∥ℜ(y)∥Y ≤M and ∥ℑ(y)∥Y ≤ δ},

and similarly on C0(I, YC)

BI
M,δ(Y ) = {U ∈ C0(I, YC) | ∀t ∈ I, ∥ℜ(U(t))∥Y ≤M and ∥ℑ(U(t))∥Y ≤ δ}.

The latter space is naturally endowed with the L∞(I, YC)-norm. When working on the complex
plane C, we will simply denote by BC(z0, r) a complex ball of center z0 and radius r > 0. With the
previous notations, we will make the following assumption on F .

Assumption 3. F is a nonlinear Lipschitz and bounded operator from B4R0(Xσ) to Xσ+ε for some
R0 > 0, σ > 0 and ε > 03. Furthermore, there exists δ > 0 so that F has a holomorphic extension
from B4R0,2δ(X

σ) to Xσ+ε
C . Moreover, there exists C > 0 so that

∥F (U0)∥Xσ+ε
C

≤ C, ∥F (U0) − F (V0)∥Xσ+ε
C

≤ C ∥U0 − V0∥Xσ
C

(1.10)

for any U0, V0 ∈ B4R0,2δ(X
σ).

We will also need a technical assumption on the pair (A,C) related to commutator estimates
useful for the regularization.

Assumption 4. There exists s > 0 so that [(A∗A)s,C] ∈ L(Xσ+2s, Xσ+ε).

We now state the main abstract result.

Theorem 1.7. Let R0 > 0 and T > 0. Assume that Assumptions 1, 2 (with T ), 3 (with R0) and 4

hold. Let T ∗ > T . Let H1 ∈ B[0,T ∗]
R0

(Xσ) and H2 ∈ C0([0, T ∗], Xσ+ε) that admit some extension in

C0([0, T ∗] + i[−µ, µ], Xσ
C), resp. C0([0, T ∗] + i[−µ, µ], Xσ+ε

C ), with µ > 0, so that the application{
(0, T ∗) + i(−µ, µ) −→ Xσ

C
z 7−→ H1(z)

is holomorphic. We assume the same for H2 with value in Xσ+ε
C . We assume moreover that

ℜH1(z) ∈ BR0(Xσ) for any z ∈ [0, T ∗] + i[−µ, µ].
Then, any solution U ∈ C0([0, T ∗], Xσ) and satisfying{

∂tU = AU + F (U +H1) +H2 on [0, T ∗],
CU(t) = 0 for t ∈ [0, T ∗],

(1.11)

is real analytic in t in (0, T ∗) with value in Xσ.

The previous result can still hold with some variants of the aforementioned assumptions (for in-
stance, considering different assumptions on A). However, we have chosen to keep enough generality
to showcase that the technique can be applied to other PDEs. This result can be seen as a sort
of finite-time adaptation of an abstract result due to Hale-Raugel [HR03, Theorem 2.5] with the
flexibility of adding analytic source terms.

Hale-Raugel were concerned with the regularity properties (including analyticity) of evolutionary
equations whose solutions are defined on t ∈ R and lie on a compact invariant set. They prove that
such solutions are as smooth (in time) as the nonlinearity, encompassing a wide range of PDEs,

3Here, we mean that F is holomorphic on Int(B4R0(X
σ)) with uniform estimates and continuous extension up to the

boundary. We will often make the same slight abuse of notation in the rest of the article.
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including dissipative hyperbolic equations, which, unlike parabolic ones, do not have smoothing
properties. Their proof relies upon a generalized Galerkin procedure, already used by dynamicians
to study the regularity of attractors in different contexts, see for instance [FT89, Gou00, Gou18]
and the references therein. The approach of Hale-Raugel was to find the high-frequency component
as a fixed point of an associate adequate mapping, depending on the low-frequency component of
the solution. Then, the problem is reduced to study the system associated with the low-frequency
component and the corresponding fixed point map parameterized by it. We can roughly say that
there are two key hypotheses for the technique to work: the exponential decay of the linear semigroup
and some sort of compactness on the nonlinearity. To adapt Hale-Raugel’s technique to a finite-time
setting, we replace the decay of the linear semigroup by its finite-time counterpart: the observability
of the linear semigroup. We are then led to solve a nonlinear observability system to find the high-
frequency component. To this end, we will heavily rely on the observability properties of the linear
semigroup generated by A and the compactness of the nonlinearity F to set up an appropriate fixed
point. It is worth mentioning that, to stabilize some semilinear damped wave equations without
GCC, Joly and the first author [JL20] successfully adapted this technique when a weaker decay of
the linear semigroup is assumed.

1.4. Outline of the article. Section 2 is devoted to the proof of the abstract Theorem 1.7. It
also contains several preliminaries as the property of finite determining modes and the abstract
propagation of regularity. Section 3 contains the applications to the nonlinear wave equation.
It contains the verification that the abstract Theorem 1.7 can be applied for a sufficiently high
regularity index σ. It also contains some propagation of regularity arguments that allow to reach
this regularity σ starting from the energy space. Section 4 contains the applications to the plate
equation. In the Appendix, we gathered some results about complex analysis in Banach spaces and
some geometric facts about the generalized geodesic flow that are used in the rest of the article.

1.5. Acknowledgement. The present article is certainly a consequence of all the earliest discus-
sions between Romain Joly and both authors. We warmly thank him for everything it brought to
this work.

The second author has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sk lodowska-Curie grant agreement No 945332.

2. Analytic reconstruction for nonlinear observability systems

The purpose of this section is to prove Theorem 1.7. For the reader’s convenience, we will briefly
outline its proof, following the Galerkin decomposition introduced in Hale-Raugel [HR03]. The
key replacement will be the observability estimate that allows to reconstruct the state from the
observation, at least for the high-frequency part.

Let T > 0 and fix σ ∈ [0, 1]. From Assumption 1, we introduce the low and high-frequency

projections Pn = 1[0,n]

(
(AA∗)1/2

)
and Qn = I − Pn, respectively. Let U = U(t) be a mild solution

of (1.11) in C0([0, T ], Xσ) and suppose H1 = 0, H2 = 0 for simplicity. Let us consider the splitting

U(t) = PnU(t) + QnU(t) = V (t) +W (t),

where
(
V (t),W (t)

)
solves the following system ∂tV (t) = AV (t) + PnF (V +W ),

∂tW (t) = AW (t) + QnF (V +W ),
CV (t) = −CW (t).

By Duhamel’s formula, the high-frequency component W can be written as

W (t) = etAW (0) +

∫ t

0
eA(t−s)QnF

(
V (s) +W (s)

)
ds.
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The observation condition CV = −CW suggests that given V , we can reconstruct W by considering
the corresponding nonlinear observability system. Indeed, according to Assumption 2, the observ-
ability of the linear semigroup t ∈ [0, T ] 7→ etA enables us to construct an initial condition W (0)
solely in terms of an observation. Forgetting first about the source term given by the nonlinearity,
that would allow to reconstruct W (0) in terms of the observation of W , which is CW = −CV .
Lemma 2.1 below provides a generalization of this reconstruction problem when source terms are
present. In this context, the first part of Assumption 3, namely, that F is a nonlinear map from
bounded sets of Xσ into Xσ+ε, will allow, at frequency sufficiently large, to consider the nonlinearity
as a perturbation and to complete this reconstruction procedure. More precisely, this will imply
the existence of a nonlinear map N such that W (0) = N (V ). Consequently, we have the formula
W = ΦV (W ), where ΦV : C0([0, T ],QnX

σ) → C0([0, T ],QnX
σ) is given by

ΦV (W )(t) = NV (·) +

∫ t

0
eA(t−s)QnF

(
V (s) +W (s)

)
ds, t ∈ [0, T ].

This suggests that we can find the high-frequency component W ∗ as a fixed point with the low-
frequency component V as an input.

At this point, the solution U can be represented as U(t) = V (t) +W ∗(V )(t), where V solves

∂tV (t) = AV + PnF (V +W ∗(V )). (2.1)

To demonstrate that t ∈ (0, T ) 7→ U(t) ∈ Xσ is analytic, the second part of Assumption 3, namely,
that F admits a holomorphic extension, is essential. This will be achieved by establishing that
t 7→ V (t) and V 7→ W ∗(V ) are both analytic maps. If instead, we consider (2.1) as a differential
equation on the space Banach space C0([0, T ],PnX

σ), classical ODEs theory imply that t 7→ V (t)
is as smooth as F , and therefore analytic. The uniform contraction principle further ensures that
W ∗ depends analytically on V , from which the result follows.

In what follows, we develop these ideas towards the proof of the main theorem. Throughout the
section, we will prove several intermediate results, some of which are of independent interest. For
instance, we mention Proposition 2.2 (Finite determining modes) and Proposition 2.3 (Propagation
of regularity) below.

2.1. Linear reconstruction, determining modes and propagation of regularity. In this
section, we will revisit the assumptions outlined in the introduction, organizing them according to
the different results we aim to establish in order to prove our main result.

From now on, we work under Assumption 1. We will now list some consequences of such an
assumption. That A∗A = −A2 is non-negative self-adjoint, allows us to define the Hilbert space
Xσ = D((A∗A)σ/2) for any σ ∈ R. Note that the assumptions imply Xσ+ε ↪→ Xσ for any ε > 0.
Unless specifically noticed, we will often omit the embedding ι : Xσ+ε → Xσ.

By the spectral theorem, and since A∗A has a compact resolvent, thus, the spectrum of A∗A
is real and discrete, allowing us to construct an orthonormal basis of eigenvectors of A∗A in H,
denoted by (Ej)j∈N and associated to the nonnegative eigenvalues (λj)j∈N (ranged increasingly)

with λj −→
j→+∞

+∞. We introduce the high-frequency projectors Qn on the space Span{Ej}j≥n and

then we set the low-frequency projection Pn = I − Qn. Note that A commutes with Pn and APn

is a bounded operator of Xσ to itself with norm ⟨λn⟩.
The parameter σ will be fixed from now on. We will use the notation PnX

σ or QnX
σ for

that related image of the Hilbert space endowed with the topology of Xσ. The restriction of the
embedding ι to QnX

σ+ε(denoted with the same name) ι : QnX
σ+ε → QnX

σ has norm ⟨λn⟩−ε.
By the spectral theorem, since the spectrum of A is purely imaginary, we can define etA for any

t ∈ R, together with the estimate ∥etAU0∥Xσ = ∥U0∥Xσ . Also, etA commutes with Pn and Qn.
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2.1.1. Linear reconstruction. We will now introduce the following assumption regarding the observ-
ability of the semigroup generated by A.

Assumption 2a. Let C ∈ L(Xσ, Xσ) be an observation operator. We assume that t 7→ etA is
observable on [0, T ], namely, there exists a constant Cobs > 0 such that

∥W0∥2Xσ ≤ C2
obs

∫ T

0
∥CetAW0∥2Xσdt, ∀W0 ∈ Xσ. (2.2)

Let O ∈ L(Xσ, L2([0, T ], Xσ)), defined by O := Ce·A, be the observation operator of linear waves
and On := O|QnXσ the high-frequency observation operator. The observability inequality (2.2) can
be written

∥W0∥Xσ ≤ Cobs ∥OW0∥L2([0,T ],Xσ) , ∀W0 ∈ Xσ, (2.3)

∥W0∥Xσ ≤ Cobs ∥OnW0∥L2([0,T ],Xσ) , ∀W0 ∈ QnX
σ, (2.4)

where the last inequality is uniform in n ∈ N. It implies that O is injective and it has a closed range.
Moreover, since QnX

σ is closed in Xσ, then the high-frequency observation operator On := O|QnXσ

has closed range as well, which allows us to define Πn as the orthogonal (according to the natural
scalar product in L2([0, T ], Xσ)) projection onto its image Im(On) ⊂ L2([0, T ], Xσ). From now on,
we equip Yn := Im(On) with the induced topology from L2([0, T ], Xσ) which makes it a Banach
space. By (2.4), we know that On : QnX

σ → Yn is a bijection, and hence, Yn is closed, a bounded
reconstruction operator O−1

n : Yn → QnX
σ exists.

By applying the observability inequality (2.4), consequence of Assumption 2a, we get for any
y ∈ Yn ⊂ L2([0, T ], Xσ),

∥O−1
n y∥Xσ ≤ Cobs∥OnO−1

n y∥L2([0,T ],Xσ) = Cobs∥y∥L2([0,T ],Xσ), (2.5)

where again, the inequality is uniform in n ∈ N.

To ease notation, we consider the operator I(t) : g 7→
∫ t
0 e

A(t−s)g(s)ds and we denote I(·) when

the operator is seen with value in C0([0, T ], Y ) for a suitable Banach space. The above construction
will enable us to solve an observability Cauchy problem, which is the content of the following Lemma.

Lemma 2.1. There exists C(T,Cobs, ∥C∥L(Xσ)) > 0 so that for any n ∈ N, H ∈ L1([0, T ], Xσ) and

G ∈ L2([0, T ], Xσ), there exists a unique W ∈ C0([0, T ],QnX
σ) solution of{

∂tW (t) = AW (t) + QnH,
ΠnCW = ΠnG.

(2.6)

It satisfies W (0) = W0 := O−1
n Πn [G−CI(·)QnH] and is given by W (t) = etAW0 + I(t)QnH. We

denote W := Fn(G,H) the associated linear operator. Moreover, we have the estimate

∥Fn(G,H)∥C0([0,T ],QnXσ) ≤ C ∥ΠnG∥L2([0,T ],Xσ) + C ∥QnH∥L1([0,T ],Xσ) (2.7)

Proof. To be solution of the first line of (2.6), it is equivalent to be written as a Duhamel formula
W (t) = etAW0 + I(t)QnH for some W0 ∈ QnX

σ. So, we only need to compute W0. With the
previous formula, we have W ∈ C0([0, T ],QnX

σ) ⊂ L2([0, T ],QnX
σ) and we can compute

ΠnCW = ΠnC
[
e·AW0 + I(·)QnH

]
= ΠnC

[
e·AW0

]
+ ΠnC [I(·)QnH] .

Note that if W0 ∈ QnX
σ, then C

[
e·AW0

]
= OW0 = OnW0 and therefore, ΠnC

[
e·AW0

]
=

ΠnOnW0 = OnW0 by definition of Πn.
In particular, since both belong to Yn, we want ΠnCW = ΠnG, we should have

O−1
n ΠnG = O−1

n ΠnCW = O−1
n OnW0 + O−1

n ΠnC [I(·)QnH] = W0 + O−1
n ΠnC [I(·)QnH] .
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This gives the W0 given. It indeed belongs to QnX
σ and therefore W , as defined, satisfies the

second line of (2.6) by reproducing the same computation backward, that is

ΠnCW = ΠnC
[
e·AW0 + I(·)QnH

]
= ΠnOnW0 + ΠnCI(·)QnH

= ΠnOnO−1
n Πn [G−CI(·)QnH] + ΠnCI(·)QnH

= Πn [G−CI(·)QnH] + ΠnCI(·)QnH = ΠnG.

The uniqueness could actually be obtained from the unique definition of W0 that we obtained, but
we prefer to give a precise proof. We consider the difference R = W1 −W2 ∈ C0([0, T ],QnX

σ)
between two such solutions W1 and W2. It satisfies{

∂tR(t) = AR(t)
ΠnCR = 0.

That is R(t) = etAR(0) and ΠnCR = ΠnOR(0) = ΠnOnR(0) = OnR(0). In particular, R(0) = 0
by injectivity of On.

Concerning the estimates, since A is skew-adjoint on Xσ, standard semigroup estimates give

∥W∥C0([0,T ],QnXσ) ≤ ∥W0∥Xσ + ∥QnH∥L1([0,T ],Xσ) . (2.8)

So, we need to estimate W0. For any G̃ ∈ L2([0, T ], Xσ), applying (2.5) to ΠnG̃ ∈ Yn, we have

∥O−1
n ΠnG̃∥Xσ ≤ Cobs∥ΠnG̃∥L2([0,T ],Xσ).

In particular, we can estimate W0 by

∥W0∥Xσ =
∥∥O−1

n Πn [G−CI(·)QnH]
∥∥
Xσ ≤ Cobs∥ΠnG∥L2([0,T ],Xσ) + Cobs∥ΠnCI(·)QnH∥L2([0,T ],Xσ).

We can finally estimate by the unitarity of Πn and Hölder inequality in time

∥ΠnCI(·)QnH∥L2([0,T ],Xσ) ≤ ∥CI(·)QnH∥L2([0,T ],Xσ) ≤ ∥C∥L(Xσ) ∥I(·)QnH∥L2([0,T ],Xσ)

≤ T 1/2 ∥C∥L(Xσ) ∥I(·)QnH∥L∞([0,T ],Xσ) ≤ T 1/2 ∥C∥L(Xσ) ∥QnH∥L1([0,T ],Xσ).

Recollecting the previous estimates, we have finally proved

∥W∥C0([0,T ],QnXσ) ≤ Cobs ∥ΠnG∥L2([0,T ],Xσ) +
(

1 + T 1/2Cobs ∥C∥L(Xσ)

)
∥QnH∥L1([0,T ],Xσ) .

□

Remark 2.1. It will be very important for what follows that the constant C involved in the previous
Lemma is independent of n ∈ N.

2.1.2. Finite determining modes. As a first direct consequence of the previous result, we can get
a finite determining mode result: two solutions of a nonlinear equation with the same observation
and the same low frequency are the same. This result will not be used directly later, but can be
considered as an easier version of what will follow where we will actually construct the reconstruction
operator and study its regularity.

We make the following assumption on the nonlinearity F , akin to a compactness property.

Assumption 3a. F is a nonlinear operator from B4R0(Xσ) to Xσ+ε for some R0 > 0, σ > 0 and
ε > 0. Moreover, there exists C > 0 so that

∥F (U0)∥Xσ+ε ≤ C, ∥F (U0) − F (V0)∥Xσ+ε ≤ C ∥U0 − V0∥Xσ (2.9)

for any U0, V0 ∈ B4R0(Xσ).

Note that the second bound implies the first one with another constant. We show the following
property of finite determining modes.
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Proposition 2.2. Let R0 > 0. Under Assumptions 1, 2a and 3a (with R0), there exists n ∈ N such
that the following holds. Let H ∈ L1([0, T ], Xσ) and G ∈ L2([0, T ], Xσ).

Let U(t) and Ũ(t) be two solutions on (0, T ) of{
∂tU = AU + F (U) +H, on (0, T ),

CU(t) = G(t), for t ∈ (0, T ),

such that ∥U(t)∥Xσ ≤ R0 and ∥Ũ(t)∥Xσ ≤ R0 for all t ∈ [0, T ]. If PnU(t) = PnŨ(t) for all times

t ∈ [0, T ], then U(t) ≡ Ũ(t) for all t ∈ [0, T ].

Proof. By assumption PnU = PnŨ as applications in B[0,T ]
R0

(Xσ). Let us consider the difference of

solutions Z = U − Ũ . It satisfies{
∂tZ = AZ + F (U) − F (Ũ),

CZ = 0.

Moreover, we have PnZ = 0, that is Z ∈ C0([0, T ],QnX
σ) and therefore, applying Qn, it also

satisfies {
∂tZ = AZ + Qn

(
F (U) − F (Ũ)

)
,

ΠnCZ = 0.

In particular, we are in the situation of Lemma 2.1 and Z = Fn(0,Qn

(
F (U) − F (Ũ)

)
) so that

estimate (2.7) gives

∥Z∥C0([0,T ],QnXσ) ≤ C
∥∥∥Qn

(
F (U) − F (Ũ)

)∥∥∥
L1([0,T ],Xσ)

≤ C

⟨λn⟩ε
∥∥∥F (U) − F (Ũ)

∥∥∥
L1([0,T ],Xσ+ε)

.

(2.10)

By hypothesis U , Ũ ∈ B[0,T ]
R0

(Xσ) and Assumption 3a implies that F (U), F (Ũ) ∈ B[0,T ]
C (Xσ+ε)

with the following Lipschitz estimate

∥Z∥C0([0,T ],Xσ) ≤
C

⟨λn⟩ε
∥∥∥U − Ũ

∥∥∥
L1([0,T ],Xσ)

≤ CT

⟨λn⟩ε
∥Z∥C0([0,T ],Xσ) . (2.11)

Adjusting n if necessary so that CT
⟨λn⟩ε < 1, we conclude that Z = 0, which is U = Ũ . □

2.1.3. Propagation of regularity. We now turn our attention to the regularity of the nonlinear sys-
tem, for which we prove a Propagation of Regularity result under suitable assumptions. This result
will later be related to a sort of uniformity for the splitting in the Galerkin procedure.

Building upon Assumption 2a, we make the following assumption, which will allow us to control
the semigroup generated by A in a slightly more regular space:

∥W0∥2Xσ+ε ≤ C2
obs

∫ T

0
∥CetAW0∥2Xσ+εdt, ∀W0 ∈ Xσ+ε. (2.12)

In that context Assumption 2 is the conjunction of Assumption 2a and (2.12), that is the observ-
ability at both levels or regularity Xσ and Xσ+ε.

Proposition 2.3. Let R0 > 0, R1 > 0 and A, C and F satisfying Assumptions 1, 2 and 3a,
respectively. Moreover, assume that the pair (A,C) satisfies Assumption 4. Then, there exists

R2 > 0 so that for any U ∈ B[0,T ]
R0

(Xσ), H1 ∈ B[0,T ]
R0

(Xσ) and H2 ∈ B[0,T ]
R1

(Xσ+ε) that satisfy (1.11)

on [0, T ], we have U ∈ B[0,T ]
R2

(Xσ+ε).

Proof. We know that (AA∗)1/2 : X1 → X admits a unique restriction so that (AA∗)1/2 : X1+σ → Xσ

is a linear continuous operator. Let us call such extension Aσ. Furthermore:
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• From Assumption 1, Aσ has compact resolvent.
• Aσ and (AA∗)1/2 have the same spectrum, hence the same resolvent set.

For simplicity, we keep the same notation A for the same operator acting on different spaces. Since
A is non-negative, its resolvent set contains R− and for n ∈ N∗, for any s > 0, we have a well defined
smoothing operator Jn = (I+ 1

nA
s)−1 ∈ L(Xσ, Xσ+s) with the uniform bound ∥Jn∥L(Xσ ,Xσ+s) ≤ n.

We also have the uniform bound ∥Jn∥L(Xσ) ≤ 1 and the same estimate holds in L(Xσ+ε). Following
Proposition [TW09, Proposition 2.3.4], we can see that Jnϕ −→

n→+∞
ϕ for any ϕ ∈ Xσ.

Let us consider Un(t) = JnU(t) and observe that Un is uniformly bounded in Xσ by some
constant C > 0, which is independent of n ∈ N. By Duhamel’s formula, let us split the solution
into its linear and nonlinear part as follows

Un(t) = etAUn
0 +

∫ t

0
eA(t−s)

(
JnF (U(s) +H1(s)) + JnH2(s)

)
ds := Un

lin(t) + Un
Nlin(t),

where Un
0 := JnU0. Observe that we have used that etA and Jn commute. Since H2 ∈ B[0,T ]

R1
(Xσ+ε)

and F satisfies Assumption 3a, we readily get that Un
Nlin is uniformly bounded in L∞([0, T ], Xσ+ε)

by some constants depending on R1 and the constant C in Assumption 3a. The latter property and
Assumption 2, allows us to treat the linear part by employing the observability inequality followed
by the triangle inequality

∥Un
lin(t)∥2Xσ+ε ≤ ∥etA∥2L(Xσ+ε)∥U

n
0 ∥2Xσ+ε

≤ C2
obs

∫ T

0
∥CUn

lin(t)∥2Xσ+εdt

≤ 2C2
obs

∫ T

0
∥CUn(t)∥2Xσ+εdt+ 2C2

obs

∫ T

0
∥CUn

Nlin(t)∥2Xσ+εdt.

Since CU ≡ 0 on [0, T ]×M, we get that CUn = CJnU = JnCU+[Jn,C]U = [Jn,C]U . Moreover,
we have [Jn,C] = 1

nJn[A,C]Jn. We have seen that ∥Jn∥L(Xσ) ≤ 1 and ∥ 1
nJn∥L(Xσ ,Xσ+s) ≤ 1, so

we get, uniformly in n

∥CUn∥L∞([0,T ],Xσ+ε) = ∥Jn[As,C]
Jn

n
U∥L∞([0,T ],Xσ+ε) ≤ R0∥[As,C]∥L(Xσ+s,Xσ+ε).

Therefore, in view of Assumption 4, the term ∥[As,C]∥L(Xσ+s,Xσ+ε) is bounded and so Un
lin is

uniformly bounded in L∞([0, T ], Xσ+ε). It follows that Un is uniformly bounded in L∞([0, T ], Xσ+ε)
by some constant C > 0. Moreover, due to the fact that ∥U − Un∥L∞([0,T ],Xσ) → 0 and leveraging

that Xσ is a Hilbert space, we get that U(t) ∈ Xσ+ε and

∥U(t)∥Xσ+ε ≤ lim inf∥Un(t)∥Xσ+ε ≤ C,

for any t ∈ [0, T ], showing that U is uniformly bounded in L∞([0, T ], Xσ+ε). □

Remark 2.2. Looking at the above proof, in regards to the nonlinearity, we only need to ensure

that t 7→
∫ t
0 e

A(t−s)F (Z(s))ds defines a bounded map in L∞([0, T ], Xσ+ε). For instance, this was
achieved here through the sole hypothesis that F (Z) is bounded in L∞([0, T ], Xσ+ε) for Z bounded
in L∞([0, T ], Xσ).

2.2. An abstract frequency-based reconstruction operator. The objective of this section is
to prove that it is possible to reconstruct the high-frequency component for the solutions of our
nonlinear system, with the low-frequency component as an input. Furthermore, this reconstruction
can be made in a holomorphic way.

Building upon Assumption 3a, we further assume that there exists δ > 0 so that F has a
holomorphic extension from B4R0,2δ(X

σ) to Xσ+ε
C for some R0 > 0, σ ≥ 0 and δ > 0. Moreover,
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there exists C > 0 so that

∥F (U0)∥Xσ+ε
C

≤ C, ∥F (U0) − F (V0)∥Xσ+ε
C

≤ C ∥U0 − V0∥Xσ
C

(2.13)

for any U0, V0 ∈ B4R0,2δ(X
σ). In this context, Assumption 3 is the conjunction of Assumption 3a

and the previous assumption.
The main result of this section is the following.

Theorem 2.4. Let R0 and R1 > 0. Under Assumptions 1, 2,3a (with R0) and 4, there exists n ∈ N
and a nonlinear Lipschitz (reconstruction) operator R

R : B[0,T ]
R0

(PnX
σ) × B[0,T ]

R0
(Xσ) × B[0,T ]

R1
(Xσ+ε) −→ B[0,T ]

R0
(QnX

σ) (2.14)

so that for any U ∈ B[0,T ]
R0

(Xσ), H1 ∈ B[0,T ]
R0

(Xσ) and H2 ∈ B[0,T ]
R1

(Xσ+ε) that satisfy{
∂tU = AU + F (U +H1) +H2, on [0, T ],

CU(t) = 0, for t ∈ [0, T ],
(2.15)

then, QnU = R(PnU,H1, H2).
Moreover, if additionally, F satisfies Assumption 3 then, there exist η, η1 > 0 so that for any

U ∈ B[0,T ]
R0

(Xσ) that satisfies (2.15), then R extends holomorphically as

R :
(
PnU + B[0,T ]

η,η (PnX
σ)
)
× B[0,T ]

R0,η
(Xσ) × B[0,T ]

R1,R1
(Xσ+ε) −→ B[0,T ]

R0,η1
(QnX

σ).

The main idea is to consider the splitting

U = PnU + QnU := V +W (2.16)

so the problem (2.15) translates into the following nonlinear observability system ∂tV (t) = AV (t) + PnF (V +W +H1) + PnH2,
∂tW (t) = AW (t) + QnF (V +W +H1) + QnH2,
CV (t) = −CW (t).

(2.17)

For a given bounded function V ∈ C0([0, T ],PnX
σ), we are interested in solving the nonlinear

observability problem {
∂tW (t) = AW (t) + QnF (V +W +H1) + QnH2,
ΠnCW = −ΠnCV.

(2.18)

Note that the operator Πn is nonlocal in time in [0, T ].

Proposition 2.5. Let R0 and R1 > 0. Under Assumptions 1, 2a and 3a (with R0), there exists

n0 ∈ N and η > 0 so that for any n ≥ n0, for any H1 ∈ B[0,T ]
5R0/2

(Xσ), H2 ∈ B[0,T ]
R1

(Xσ+ε) and

G ∈ Bη(L2([0, T ], Xσ)), there exists a unique solution W ∈ B[0,T ]
R0

(QnX
σ) to{

∂tW = AW + QnF (W +H1) + QnH2,
ΠnCW (t) = ΠnG.

(2.19)

This defines a nonlinear Lipschitz operator R̃{
B[0,T ]
5R0/2

(Xσ) × B[0,T ]
R1

(Xσ+ε) × Bη(L2([0, T ], Xσ)) −→ C0([0, T ],QnX
σ)

(H1, H2, G) 7−→ W := R̃(H1, H2, G).
(2.20)

Moreover, if additionally, F satisfies Assumption 3, then, there exists η > 0 so that R̃ extends
holomorphically in

R̃ : B[0,T ]
5R0/2,η

(Xσ) × B[0,T ]
R1,R1

(Xσ+ε) × Bη,η(L2([0, T ], Xσ)) −→ C0([0, T ],QnX
σ
C).
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Proof of Theorem 2.4 from Proposition 2.5. Let χ ∈ C∞
0 (R, [0, 1]) supported in [−1, 1] so that χ(s) =

1 for s ∈ [−1/2, 1/2]. We define the operator R by the formula

R(V,H1, H2) = R̃(V +H1, H2,−χ(η−1 ∥CV ∥L2([0,T ],Xσ))CV ). (2.21)

where η is the one in Proposition 2.5. If V is complex-valued, we mean χ(η−1 ∥CV ∥L2([0,T ],Xσ
C )

).

We prove that it is well defined and satisfies the requirements of Theorem 2.4.
We first notice that χ(η−1 ∥CV ∥L2([0,T ],Xσ)) = 0 if ∥CV ∥L2([0,T ],Xσ) ≥ η, so that we always

have
∥∥∥χ(η−1 ∥CV ∥L2([0,T ],Xσ))CV

∥∥∥
L2([0,T ],Xσ)

≤ η. In particular, R is well defined from the spaces

precised in (2.14).
Now, we check that it satisfies the required properties. Let U be as in the Theorem and a solution

of (2.15). We want to check that for n large enough (only depending on the parameters), we can
impose QnU to be small in C0([0, T ], Xσ) and CPnU to be small in Xσ. We can apply Proposition
2.3 to U to propagate regularity, resulting in ∥U∥C0([0,T ],Xσ+ε) ≤ R2 for some R2 > 0. We have

∥QnU∥C0([0,T ],Xσ) ≤
1

⟨λn⟩ε
∥QnU∥C0([0,T ],Xσ+ε) ≤

R2

⟨λn⟩ε
. (2.22)

For such a solution satisfying (2.15), we have CU = 0 and in particular, CQnU = −CPnU , so that

∥CPnU∥L2([0,T ],Xσ) = ∥CQnU∥L2([0,T ],Xσ) ≤ T 1/2 ∥C∥L(Xσ) ∥QnU∥C0([0,T ],Xσ)

≤
T 1/2 ∥C∥L(Xσ)R2

⟨λn⟩ε
.

Since λn → +∞ as n → +∞, we can find n ≥ n0 so that it can be made smaller that η/4. In
particular, defining W := R(PnU,H1, H2), we have by definition of R,

W = R̃(PnU +H1, H2,−CPnU)

is the unique solution in B[0,T ]
R0

(QnX
σ) of{

∂tW = AW + QnF (W + PnU +H1) + QnH2

ΠnCW = −ΠnCPnU.

Also, since CPnU = −CQnU we notice that QnU is solution of{
∂tQnU = AQnU + QnF (QnU + PnU +H1) + QnH2

ΠnCQnU = −ΠnCPnU.

In particular, since ∥CPnU∥L2([0,T ],Xσ) ≤ η/4 and by the various bounds, we have PnU + H1 ∈
B[0,T ]
2R0

(Xσ), H2 ∈ B[0,T ]
R1

(Xσ+ε) and −CPnU ∈ Bη(L2([0, T ], Xσ)). By definition of R̃, this implies

QnU = R̃(PnU +H1, H2,−CPnU). So we conclude QnU = W = R(PnU,H1, H2) as expected.

Concerning the holomorphic extension, since R̃ has a holomorphic extension, as proved in
Proposition 2.5, using formula (2.21) and composition of function, it is enough to prove that
V 7→ −χ(η−1 ∥CV ∥L2([0,T ],Xσ

C )
) is constant equal to 1 and therefore holomorphic in some neigh-

borhood PnU + B[0,T ]
η1,η1(PnX

σ) that would be included in B[0,T ]
3R0/2,η/2

(Xσ). This can be obtained for

η1 small enough since ∥CPnU∥L2([0,T ],Xσ) ≤ η/4. This gives the result up to renaming η1 by η. □

Proof of Proposition 2.5. Using Lemma 2.1 (recall that Fn denotes a linear flow map), we are
looking for W solution of

W = Fn(G,F (W +H1) +H2).



18

So, it is natural to define the nonlinear operator Φn,G,H1,H2 defined by

Φn,G,H1,H2(W ) := Fn(G,F (W +H1) +H2) (2.23)

that we will prove later to be well defined from suitable balls of C0([0, T ],QnX
σ) to C0([0, T ],QnX

σ).
To keep notations reasonable, we will write Φ = Φn,V,G,H1,H2 keeping in mind all the dependence.
The goal will be to find a fixed point of the operator Φ in a small ball that will also satisfy (2.19).

Following Hale-Raugel [HR03, Theorem 2.14] and Joly-Laurent [JL20, Theorem 10.1], we divide
the proof in three steps.

Step 1. High-frequency fixed point: real case. For this part of the proof, we consider all the functions
involved to be real-valued, in the sense that we consider the real vector space Xσ.

We fix H1 ∈ B[0,T ]
5R0/2

(Xσ), H2 ∈ B[0,T ]
R0

(Xσ+ε) and G ∈ Bη(L2([0, T ], Xσ)), but we will make

estimates uniform when these functions are in these sets.
We want to find a fixed point in W ∈ B[0,T ]

R0
(QnX

σ) by the fixed point theorem of Banach. We
prove that Φ is a contraction in this set.

Let W ∈ B[0,T ]
R0

(QnX
σ). Estimate (2.7) of Lemma 2.1 gives for some constants uniform in n ∈ N

∥Φ(W )∥C0([0,T ],QnXσ) = ∥Fn(G,F (W +H1) +H2)∥C0([0,T ],QnXσ)

≤ C ∥ΠnG∥L2([0,T ],Xσ) + C ∥Qn [F (W +H1) +H2]∥L1([0,T ],Xσ) .

Since Πn is a projection on L2([0, T ], Xσ), we have ∥ΠnG∥L2([0,T ],Xσ) ≤ ∥G∥L2([0,T ],Xσ) ≤ η by

assumption. So, it remains to estimate the second term. Since ∥W +H1∥C0([0,T ],Xσ) ≤ 3R0, we can

use (2.9) and get

∥Qn [F (W +H1) +H2]∥L1([0,T ],Xσ) ≤
1

⟨λn⟩ε
∥F (W +H1) +H2∥L1([0,T ],Xσ+ε) (2.24)

≤ T

⟨λn⟩ε
(C +R1) . (2.25)

Summing up the previous estimates gives

∥Φ(W )∥C0([0,T ],QnXσ) ≤ Cη +
1

⟨λn⟩ε
(C +R1) .

Concerning the difference, similar estimates give for W,W ′ ∈ B[0,T ]
R0

(QnX
σ), using instead the second

estimate of (2.9)∥∥Φ(W ) − Φ(W ′)
∥∥
C0([0,T ],QnXσ)

=
∥∥Fn(0, F (W +H1) − F (W ′ +H1))

∥∥
C0([0,T ],QnXσ)

≤ C
∥∥Qn

[
F (W +H1) − F (W ′ +H1))

]∥∥
L1([0,T ],Xσ)

≤ C

⟨λn⟩ε
∥∥F (W +H1) − F (W ′ +H1))

∥∥
L1([0,T ],Xσ+ε)

≤ CCT

⟨λn⟩ε
∥∥W −W ′∥∥

C0([0,T ],Xσ)
. (2.26)

In particular, if η is chosen small enough and n0 is large enough, then Φ reproduces B[0,T ]
R0

(QnX
σ)

and is contracting.

Step 2. Extension to the complex case. The proof is very similar to the real case. We define Φ with
the same formula as (2.23) but for

W ∈ B[0,T ]
R0,η1

(QnX
σ), H1 ∈ B[0,T ]

5R0/2,η
(Xσ), H2 ∈ B[0,T ]

R1,R1
(Xσ+ε), G ∈ Bη,η(L2([0, T ], Xσ))

where η1 > 0 small is to be fixed later on.
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The flow map Fn is linear, so the extension to complex-valued vectors is clear, see [BS71b,
Theorem 3]. So, we only need to check that the valuation F (W+H1) makes sense and the contraction

in B[0,T ]
R0,η1

(QnX
σ) of Φ is still true with these parameters, up to making η small and n large.

If W ∈ B[0,T ]
R0,η1

(QnX
σ), H1 ∈ B[0,T ]

5R0/2,η
(Xσ), then W + H1 ∈ B[0,T ]

7R0/2,η1+η(Xσ) ⊂ B[0,T ]
4R0,δ

(Xσ) if we

have η1 + η ≤ δ, so that F (W + H1) is well defined and satisfies similar estimates as in the real

case, thanks to (2.13) in Assumption 3. It remains to check Φ(W ) ∈ B[0,T ]
R0,η

(QnX
σ). We still have

∥ΠnG∥L2([0,T ],Xσ
C )

≤ 2η,

when G ∈ Bη,η(L2([0, T ], Xσ)), while a similar estimate as in (2.24) gives

∥Qn [F (W +H1) +H2]∥L1([0,T ],Xσ
C )

≤ 1

⟨λn⟩ε
(C + 2R1) .

Finally, the linear estimate (2.7) of Lemma 2.1 still holds in the complex-valued case, so, we get

∥Φ(W )∥C0([0,T ],QnXσ
C )

≤ 2η +
1

⟨λn⟩ε
(C + 2R1) .

The bound (2.26) holds in the complex case without modification. So, we obtained that if η1+η ≤ δ,

4η ≤ η1 ≤ R0 and n is large enough, Φ is a contraction on B[0,T ]
R0,η1

(QnX
σ). This gives a unique fixed

point in the complex case.

Step 3. Regularity of the fixed point. We prove that for fixed n, the map Φ̂ : (W,G,H1, H2) 7→
Φn,G,H1,H2(W ) is Lispchitz of its arguments under Assumption 3a and holomorphic when Assump-
tion 3 is made. Recalling Definition (2.23) and that Fn is linear in its arguments, we see that, by
composition, it will be enough to verify that (W,H1) 7→ F (W + H1) is Lipschitz or holomorphic,
depending on the assumption made.

First of all, observe that the same argument to get estimates (2.26), shows that (W,H1) 7→
F (W +H1) is Lipschitz under Assumption 3a, and by linearity of the flow map Fn, so is the map

Φ̂ : B[0,T ]
R0

(QnX
σ) × Bη(L2([0, T ], Xσ)) × B[0,T ]

2R0
(Xσ) × B[0,T ]

R1
(Xσ+ε) −→ C0([0, T ],QnX

σ).

Now, under Assumption 3, the same argument as before shows that the complex extension, denoted

by the same letter Φ̂,{
B[0,T ]
R0,η

(QnX
σ) × Bη,η(L2([0, T ], Xσ)) × B[0,T ]

2R0,η
(Xσ) × B[0,T ]

R1,R1
(Xσ+ε) −→ C0([0, T ],QnX

σ
C)

(W,G,H1, H2) 7−→ Φn,G,H1,H2(W )

is Lipschitz, hence continuous. In view of Theorem A10 and that Φ̂ is linear in the variables G and
H2 separately, the main task is to show that the map{

B[0,T ]
4R0,η

(Xσ
C) × B[0,T ]

2R0,η
(Xσ) −→ C0([0, T ], Xσ+ε

C )

(W,H1) 7−→ F (W +H1)
(2.27)

is holomorphic on each variable separately. Since F is holomorphic when defined from some balls
to Xσ to Xσ+ε, the only point to check is that it implies the same result as an application on
time-dependent functions in C0([0, T ], Xσ).

Fix W ∈ Int(B[0,T ]
R0,η

(QnX
σ)) and H1 ∈ Int(B[0,T ]

5R0/2,η
(Xσ)) and ℓ > 0 so that BC0([0,T ],Xσ

C))(W +

H1, ℓ) ⊂ B[0,T ]
4R0,2η

(Xσ)). Let C be the bound on F in Assumption 2.13. For allKW ∈ C0([0, T ],QnX
σ
C)

and KH ∈ C0([0, T ], Xσ
C) with ∥KW + KH∥C0([0,T ],Xσ

C )
≤ ℓ/4 and t ∈ [0, T ], we have (W + H1 +

KW +KH)(t) ∈ B4R0,2δ(X
σ) (recall η < δ). Being F holomorphic, by applying a Taylor expansion
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(see Theorem A8) together with Cauchy estimates (see Theorem A9), we have the bound, uniform
in t ∈ [0, T ],

∥F (W (t) +H1(t) +KW (t) +KH(t))−F (W (t) +H1(t))− δF (W (t) +H1(t);KW (t) +KH(t))∥Xσ+ε
C

≤
4C∥KW (t) +KH(t)∥2Xσ

C

ℓ(ℓ− 2∥KW (t) +KH(t)∥Xσ
C

)
≤

4C∥KW +KH∥2C0([0,T ],Xσ
C )

ℓ(ℓ− 2∥KW +KH∥C0([0,T ],Xσ
C )

)
≤

8C∥KW +KH∥2C0([0,T ],Xσ
C )

ℓ2
,

(2.28)

where

δF (Z;K) := lim
s→0

1

s
(F (Z + sK) − F (Z)).

The differential of F can be easily extended from C0([0, T ], Xσ
C) into C0([0, T ], Xσ+ε

C ). Since, the
previous estimate is uniform in t ∈ [0, T ], we can write

∥F (W +H1 +KW +KH) − F (W +H1) − δF (W +H1;KW +KH)∥C0([0,T ],Xσ+ε
C )

≤
8C∥KW +KH∥2C0([0,T ],Xσ

C )

ℓ2
. (2.29)

Actually, the previous estimate (2.29) holds uniformly in a ball around (W,H1) of radius ℓ/4.
Consequently, we establish that the map{

B[0,T ]
R0,η

(Xσ) × B[0,T ]
5/2R0,η

(Xσ) −→ C0([0, T ], Xσ+ε
C )

(W,H1) 7−→ F (W +H1)
(2.30)

is Fréchet differentiable (in the complex sense), hence holomorphic as an application of Theorem
A7. The estimates in Lemma 2.1 show that the application Fn is bilinear continuous with respect
to each of its parameters and therefore has an obvious holomorphic extension. Since the embedding
ι : C0([0, T ], Xσ+ε

C ) → L1([0, T ], Xσ
C) is linear, an application of the chain rule (see Theorem A4)

shows that the map{
B[0,T ]
R0/2

(Xσ) × Bη(L2([0, T ], Xσ)) × B[0,T ]
5R0/2

(Xσ) × B[0,T ]
R1

(Xσ+ε) −→ C0([0, T ],QnX
σ)

(W,G,H1, H2) 7−→ Φn,G,H1,H2(W )
(2.31)

is holomorphic since it is defined by Φn,G,H1,H2(W ) := Fn(G, ι (F (W +H1) +H2)). The conclusion

that the nonlinear reconstruction operator R̃ is holomorphic follows as a direct application of
Theorem A12 of regularity of fixed points with respect to parameters. □

2.3. Analyticity in time of the observed solution. Here we prove the main theorem of this
section, that is the abstract Theorem 1.7 of analytic regularity stated in the introduction.

Proof of Theorem 1.7. First, since y 7→ maxt∈[0,T ∗] ∥ℑH1(t+ iy)∥Xσ is a continuous function on
[−µ, µ] that is equal to zero at y = 0, there exists 0 < µ′ < µ so that maxt∈[0,T ] |ℑH1(t+ iy)| ≤ η
for y ∈ [−µ′, µ′], where η is given by Theorem 2.4. We can do the same for H2. We denote
R1 = maxz∈[0,T ∗]+i[−µ,µ] ∥H2(z)∥Xσ+ε .

Let n ∈ N, η > 0 and R be given by Theorem 2.4, with the chosen R0 and R1. Let 0 < ν < T ∗−T .
With these two choices, if we define for s ∈ [−ν, T ∗−T−ν], Hs

1 as the application t 7→ H1(t+ν+s),

we have Hs
1 ∈ B[0,T ]

R0,η
(Xσ) for any s ∈ [−ν, T ∗ − T − ν]. Moreover, the application s 7→ Hs

1 is

continuous. Indeed, since t ∈ [0, T ∗] 7→ H1(t) ∈ Xσ is a continuous map defined on a compact set,
it is uniformly continuous. Hence, for every ε > 0 and any t ∈ [0, T ], there exists δ > 0 so that for
any s, s0 ∈ [−ν, T ∗−T −ν] with |(s+ t)− (s0 + t)| ≤ δ, then ∥H1(t+ν+s)−H1(t+ν+s0)∥Xσ ≤ ε.
Since the later property does not depend on t, we can take supt∈[0,T ] in the last inequality to obtain
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that ∥Hs
1 −Hs0

1 ∥C0([0,T ],Xσ) ≤ ε. We do the same for H2, so we have Hs
2 ∈ B[0,T ]

R1,R1
(Xσ+ε) for any

s ∈ [−ν, T ∗ − T − ν] and moreover s 7→ Hs
2 is continuous.

For U , we can define similarly U s ∈ B[0,T ]
R0,η

(Xσ) for any s ∈ [−ν, T ∗ − T − ν]. We can also

decompose U = PnU +QnU =: V +W and U s = V s +W s. For any fixed s ∈ [−ν, T ∗ − T − ν], the
assumption (1.11) implies{

∂tU
s = AU s + F (U s +Hs

1) +Hs
2 on [0, T ],

CU s(t) = 0 for t ∈ [0, T ].
(2.32)

In particular, for any fixed s ∈ [−ν, T ∗ − T − ν], Theorem 2.4 gives

W s = QnU
s = R(PnU

s, Hs
1 , H

s
2) = R(V s, Hs

1 , H
s
2), (2.33)

the equality being meant in C0([0, T ],QnX
σ).

But if we denote G = PnF (U +H1) + PnH2 = PnF (V +W +H1) + PnH2 ∈ C0([0, T ∗],PnX
σ),

then V ∈ C0([0, T ∗],PnX
σ) is solution of

∂tV = PnAV +G on [0, T ∗].

With the related notations, Lemma A2 implies

∂sV
s = PnAV

s +Gs on [−ν, T ∗ − T − ν]. (2.34)

But for any fixed s ∈ [−ν, T ∗ − T − ν], we have, using (2.33),

Gs = PnF (V s +W s +Hs
1) + PnH

s
2 = PnF (V s + R(V s, Hs

1 , H
s
2) +Hs

1) + PnH
s
2

with equality in C0([0, T ],QnX
σ).

It is then natural to define the application{
F̃ : [−ν, T ∗ − T − ν] × B[0,T ]

R0
(PnX

σ) → C0([0, T ],PnX
σ)

(s, Ṽ ) 7→ PnF (Ṽ + R(Ṽ ,Hs
1 , H

s
2) +Hs

1) + PnH
s
2 .

(2.35)

This application is well-defined, continuous and locally Lipschitz (with respect to the second vari-

able). Observe that Hs
1 ∈ B[0,T ]

R0
(Xσ), Hs

2 ∈ B[0,T ]
R1

(Xσ+ε) for all s ∈ [−ν, T ∗ − T − ν] and

Ṽ ∈ B[0,T ]
R0

(PnX
σ) implies, by construction, that Ṽ + R(Ṽ ,Hs

1 , H
s
2) + Hs

1 ∈ B[0,T ]
3R0

(Xσ). There-

fore F (Ṽ + R(Ṽ ,Hs
1 , H

s
2) + Hs

1) is well defined and so is F̃ . Recall that R is Lipschitz on its
variables, that is, there exists L > 0 such that

∥R(Ṽ ,Hs
1 , H

s
2) −R(Ṽ ∗, Hs∗

1 , H
s∗
2 )∥C0([0,T ],Xσ) ≤ L

(
∥Ṽ − Ṽ ∗∥C0([0,T ],Xσ)

+ ∥Hs
1 −Hs∗

1 ∥C0([0,T ],Xσ) + ∥Hs
2 −Hs∗

2 ∥C0([0,T ],Xσ+ε)

)
,

for all Ṽ , Ṽ ∗ ∈ B[0,T ]
R0

(PnX
σ) and s, s∗ ∈ [−ν, T ∗ − T − ν]. The continuity of F̃ then follows by the

continuity of s 7→ (Hs
1 , H

s
2), Assumption 3 and by algebra of continuous maps. The same inequality

along with Assumption 3 shows that

∥F̃ (s, Ṽ ) − F̃ (s, Ṽ ∗)∥C0([0,T ],PnXσ) ≤ C∥Ṽ − Ṽ 0∥C0([0,T ],PnXσ),

for any Ṽ , Ṽ ∗ ∈ B[0,T ]
R0

(PnX
σ) and s ∈ [−ν, T ∗ − T − ν].

Moreover, we claim that for any s0 ∈ (−ν, T ∗ − T − ν), there exists ρ > 0 so that it admits a
holomorphic extension (in both variables){

F̃ : BC(s0, ρ) ×
[
V s0 + B[0,T ]

η,η (PnX
σ)
]

→ C0([0, T ],PnX
σ
C)

(z, Ṽ ) 7→ PnF (Ṽ + R(Ṽ ,Hz
1 , H

z
2 ) +Hz

1 ) + PnH
z
2 .
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By Theorem 2.4, around V s0 = PnU
s0 , the map R extends holomorphically as

R :
[
V s0 + B[0,T ]

η,η (PnX
σ)
]
× B[0,T ]

R0,η
(Xσ) × B[0,T ]

R1,R1
(Xσ+ε) −→ C0([0, T ],QnX

σ
C).

We need to argue that, the application z 7→ Hz
1 is holomorphic from BC(s0, ρ) to C0([0, T ], Xσ

C)
for ρ > 0 small enough, and that the same holds for z 7→ Hz

2 from BC(s0, ρ) with values in
C0([0, T ], Xσ+ε

C ). Indeed, since

z ∈ (0, T ∗) + i(−µ′, µ′) 7→ H1(z) ∈ Xσ
C

is holomorphic, for each s0 ∈ [−ν, T ∗ − T − ν] we can find ρ > 0 such that, for any t ∈ [0, T ], the
application

z ∈ BC(s0, ρ) 7−→ H1(z + t+ ν) ∈ Xσ
C

is holomorphic. As we did in the proof of Proposition 2.5, by using Cauchy estimates and the bound
on H1(z), for each t ∈ [0, T ] and any z0 ∈ BC(s0, ρ), we can find ℓ > 0 such that

∥H1(z + h+ t+ ν) −H1(z + t+ ν) − δH1(z + t+ ν, h)∥Xσ
C
≤ 4(R0 + η)|h|2

ℓ(ℓ− 2|h|)
≤ 8(R0 + η)|h|2

ℓ2

holds uniformly for all z ∈ BC(z0, ℓ/4) and BC(0, ℓ/4). Moreover, the last estimate is independent
of t ∈ [0, T ], so we actually have

∥Hz+h
1 −Hz

1 − δH1(z + · + ν, h)∥C0([0,T ],Xσ
C )

≤ 8(R0 + η)|h|2

ℓ2
,

uniformly for all z ∈ BC(z0, ℓ/4) and |h| ≤ ℓ/4. The previous estimate shows that the application

z ∈ BC(s0, ρ) 7−→ Hz
1 ∈ B[0,T ]

R0,η
(Xσ)

is holomorphic. The argument works similarly to show that z 7→ Hz
2 is holomorphic.

By composition of holomorphic functions and Theorem A10 we get that{
BC(s0, ρ) ×

[
V s0 + B[0,T ]

η,η (PnX
σ)
]

→ C0([0, T ],QnX
σ
C)

(z, Ṽ ) 7→ R(Ṽ ,Hz
1 , H

z
2 )

is a well-defined and holomorphic map. That the extension F̃ is holomorphic, follows from Assump-
tion 3, algebra of holomorphic maps, and that Pn is a linear bounded operator.

Since we have proved that for any s ∈ [−ν, T ∗ − T − ν], Gs = F̃ (s, V s), we obtain that the
equation (2.34) verified by V s can be written as

∂sV
s = PnAV

s + F̃ (s, V s) on [−ν, T ∗ − T − ν].

We can then consider the following ODE, defined in the Banach space C0([0, T ],PnX
σ
C),{

∂sξ(s) = PnAξ(s) + F̃ (s, ξ(s))
ξ(s0) = V s0 .

(2.36)

Notice that C0([0, T ],PnX
σ) is of infinite dimension, but we can check that PnA is a linear bounded

operator on it. Lemma A1 shows that V s, which is a solution of (2.36) in the sense of semi-group,
is also a solution in the usual sense of ODE in Banach space.

Notice that PnA+F̃ is holomorphic from BC(s0, ρ)×
[
V s0 + B[0,T ]

η,η (PnX
σ)
]

into C0([0, T ],PnX
σ
C).

Therefore, by the classical theory of ODEs in Banach spaces [Die69, Theorem 10.4.5], we obtain a
unique classical solution of (2.36)

ξ : BC(s0, ρ
′) 7−→ Ṽ (z) ∈ C0([0, T ],PnX

σ
C)
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for some ρ′ ∈ (0, ρ]. Moreover, such a solution map inherits the regularity of the right-hand side of
the ODE and so it is a holomorphic map. By uniqueness of the solutions, we have ξ(s) = V s for
s ∈ (s0 − ρ′, s0 + ρ′).

Moreover, the maps z 7→ ξ(z) and{
BC(s0, ρ) ×

[
V s0 + B[0,T ]

η,η (PnX
σ)
]

→ C0([0, T ],PnX
σ
C)

(z, Ṽ ) 7→ Ṽ + R(Ṽ ,Hz
1 , H

z
2 )

are both holomorphic in their respective spaces, and so is its composition z 7→ ξ(z)+R(ξ(z), Hz
1 , H

z
2 ).

But for s ∈ (s0 − ρ′, s0 + ρ′), ξ(s) = V s, so that ξ(s) + R(ξ(s), Hs
1 , H

s
2) = V s + R(V s, Hs

1 , H
s
2) =

V s + W s = U s where we have used (2.33) and (s0 − ρ′, s0 + ρ′) ⊂ (−ν, T ∗ − T − ν) for ρ′ small
enough. In particular, the map s ∈ (s0 − ρ′, s0 + ρ′) 7→ U s ∈ C0([0, T ], Xσ) is the restriction to a
real interval of a holomorphic map, and hence is real analytic.

Since for any t0 ∈ [0, T ], the trace application C0([0, T ], Xσ) → Xσ is linear continuous, then, we
obtain by composition that the application{

(s0 − ρ′, s0 + ρ′) → Xσ

s 7→ U s(t0) = U(t0 + ν + s)

is real analytic. Recall that ρ′ depends on all the other parameters, but ν is an arbitrary number
with 0 < ν < T ∗ − T , s0 is any number with s0 ∈ (−ν, T ∗ − T − ν) while t0 is arbitrary in [0, T ].
It means that t 7→ U(t), (which is well defined for t ∈ [0, T ∗]), is real analytic in a neighborhood of
any t1 of the form t1 = t0 + ν + s0 with t0, ν and s0 as before. It is not hard to see that it implies
that t 7→ U(t) is real analytic on (0, T ∗), as expected. □

3. Application to the wave equation

The aim of this section is to prove the main results of propagation of analyticity and unique
continuation related to the semilinear wave equation.

3.1. Notation and preliminaries. Let β ≥ 0. Set X = H1
0 (M) × L2(M) and introduce the

operator

A =

(
0 I

∆g − β 0

)
with D(A) =

(
H2(M) ∩H1

0 (M)
)
×H1

0 (M).

For the standard scalar product on X (with ∥u∥2
H1

0
= ∥∇u∥2L2 + β∥u∥2L2), we can compute

A∗ = −A and A∗A = −A2 =

(
−∆g + β 0

0 −∆g + β

)
,

where we used the same notation for the Dirichlet Laplacian defined on H1
0 (M) and L2(M) with

their natural respective domains. Observe that A satisfies Assumption 1 on the real Hilbert space
X. For σ ≥ 0, Hσ

D and Xσ denote the spaces

Hσ
D = D((−∆g)σ/2), (3.1)

Xσ = D((A∗A)σ/2) = D((−∆g)(1+σ)/2) ×D((−∆g)σ/2) = H1+σ
D ×Hσ

D. (3.2)

Here, ∆g denotes the Dirichlet Laplacian defined on L2.

Remark 3.1. For σ ∈ [0, 1/2), we have Xσ = (H1+σ(M)∩H1
0 (M))×Hσ(M), while for σ ∈ (1/2, 1],

we have Xσ = (H1+σ(M) ∩H1
0 (M)) ×Hσ

0 (M), see [Gri67]. Notice that X0 = X and X1 = D(A).
When ∂M = ∅, we still write H1

D = H1
0 = H1 and assume β > 0 so that Poincaré-like inequalities

hold.
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By the spectral theorem, −∆g has a compact resolvent and thus, we can construct an orthonormal
basis of eigenfunctions of −∆g in L2(M), denoted by (ej)j∈N and associated to the eigenvalues

(λj)j∈N. We introduce the high-frequency projectors Qn on the space Span{ej}j≥n and then we set
the low-frequency projection Pn = I − Qn. In the same direction we then set Qn = (Qn, Qn) and
Pn = (Pn, Pn) on X, fitting on the abstract framework given in Section 2.

In regards to the nonlinearity, for some χ̃ ∈ C∞(M) to be chosen later, we use the notation

F : (u, v) 7−→ (0,−χ̃f(u) + βu), (3.3)

where f : R → R will be either C4 or analytic. By setting U(t) := (u(t), ∂tu(t)), if χ̃ = 1, we can
write the associated Cauchy problem to (1.1) as{

∂tU = AU + F (U)
U(0) = U0.

(3.4)

We will later consider some slightly different problems, which is why we introduce the cutoff χ̃.
Since A is skew-adjoint, by Stone’s theorem it generates a unitary group t 7→ etA on X and on
D(A). In particular,

∀t ∈ [0, T ], ∥etA∥L(X) = 1 and ∥etA∥L(D(A)) = 1.

By linear interpolation, the same holds on Xσ for any σ ∈ (0, 1).
Now we establish some regularity properties for F . First of all, we recall a version of a result

that can be found in Alinhac-Gérard [AG91, Proposition 2.2], in relation to the regularity of a
composition.

Lemma 3.1. Let g : R → R be a C3(R,R) function, with g(0) = 0. If u ∈ L∞(M) ∩Hs(M), with
s ∈ (0, 2), then g(u) ∈ L∞(M) ∩Hs(M) and ∥g(u)∥Hs ≤ C∥u∥Hs, where C only depends on g and
∥u∥L∞.

Remark 3.2. The previous Lemma is actually written in [AG91] for function in Hs(Rd) and f ∈ C∞.
Yet, the same result holds for functions in Hs(M) when M is a compact manifold with boundary
using the definition of the norm of Hs(M) by partition of unity and sum of the norm in Hs(Rd)
of the functions in local coordinates and with extension. Concerning the requirement g ∈ C3,
we only notice that the Meyer multiplier Lemma [AG91, Lemma 2.2.] requires estimates of the
derivatives of the multiplier up to ⌊s⌋+1 ≤ 2. Since it is applied to g′ in [AG91, Proposition 2.2], it
requires g′ ∈ C2. Note that, as proved in [Gri67], for functions satisfying the appropriate boundary
condition, (that is f = 0 on ∂M for 1/2 < s < 5/2 and no condition if 0 ≤ s < 1/2), the norms
Hs(M) (defined as restrictions of functions in Hs(Rd) in local coordinates) and the norms Hs

D(M)
defined by spectral theory are equivalent.

We now prove that F satisfies Assumption 3a and 3 under suitable hypothesis on the function f .

Proposition 3.2. Let σ ∈ (1/2, 1] if d = 3 and σ ∈ (0, 1] if d ≤ 2. Assume that f ∈ C4(R,R) and
χ̃ ∈ C∞(M). Then F , defined in (3.3), satisfies Assumption 3a for any ε ∈ (0, 1] and R0 > 0. If
in addition, f is real analytic, then F satisfies Assumption 3.

Proof. We will use the notation introduced in (3.1) for the Sobolev spaces. In what follows, C will
denote a generic constant, that may change from line to line, but we will specify its dependency on
the parameters involved in the estimates. We consider β = 0 for simplifying the statements since this
term is easier to treat. Thanks to the choice of σ, we have the embedding H1+σ

D ↪→ L∞ with constant

denoted κ. Since f ∈ C4, we can apply Lemma 3.1, so that for any v ∈ H1+σ
D , we have that both

f(v) and Df(v)−Df(0) are well defined in H1+σ
D and moreover ∥Df(v)−Df(0)∥H1+σ

D
≤ C∥v∥H1+σ

D
,
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where C depends on Df and the L∞-norm of v. Therefore, using that H1+σ is an algebra, we get,
for any v, v′ ∈ H1+σ

D ,

∥f(v) − f(v′)∥H1+σ
D

=

∥∥∥∥∫ 1

0
Df(v′ + τ(v − v′))(v − v′)dτ

∥∥∥∥
H1+σ

(3.5)

≤ C

(
1 +

∥∥∥∥∫ 1

0

(
Df(v′ + τ(v − v′) −Df(0)

)
dτ

∥∥∥∥
H1+σ

)
∥v − v′∥H1+σ

D
(3.6)

≤ C
(

1 + ∥v∥H1+σ
D

+ ∥v′∥H1+σ
D

)
∥v − v′∥H1+σ

D
, (3.7)

where C is a constant depending only on Df and the L2-norm of both v and v′. Note that we have
used f(0) = 0 to get ∥f(v)−f(v′)∥H1+σ

D
= ∥f(v)−f(v′)∥H1+σ , where we consider one norm of H1+σ

defined in local coordinates so that Lemma 3.1 can be applied.
We now establish that F satisfies Assumption 3a. Let V , V ′ ∈ B4R0(Xσ). Observe that the first

component of V and V ′, denoted by v and v′, respectively, always stay smaller than 4κR0 in L∞.
This implies that F is a well defined map on B4R0(Xσ). For ε ∈ (0, 1], we have σ + ε ≤ 1 + σ and
thus the continuous embedding H1+σ

D ↪→ Hσ+ε
D . Therefore,

∥F (V ) − F (V ′)∥Xσ+ε = ∥χ̃(f(v) − f(v′))∥Hσ+ε
D

≤ C∥f(v) − f(v′)∥H1+σ
D

, (3.8)

where C is a constant depending on χ. Combining inequalities (3.7) and (3.8), we get

∥F (V ) − F (V ′)∥Xσ+ε ≤ C(1 + 8R0)∥V − V ′∥Xσ , (3.9)

where C depends only χ̃, f and R0. Inequality (3.9) proves the claim.
Now, we will show that F satisfies Assumption 3 if we assume that f is real analytic. By

compactness, there exists δ > 0 small such that f extends holomorphically into the interior of the
complex strip

SR0,δ := {z1 + iz2 ∈ C | |z1| ≤ 4κR0 and |z2| ≤ 2κδ}.

Moreover, this extension is continuous up to the boundary and there exists a constant M > 0 so
that |f(z)| ≤M for all z ∈ SR0,δ. We still denote by f such an extension. A slight variant of Lemma
3.1 allows to consider the composition of smooth functions defined on domains of C by functions
in H1+σ, assuming that the composition makes sense. Since κ is the constant of the embedding
H1+σ

D ↪→ L∞, we see that f(v) is well defined in B4R0,2δ(H
1+σ
D ). In particular, F is well defined in

B4R0,2δ(X
σ) and satisfies the same estimate as (3.7).

Now, we will prove that this application F is C-differentiable. We write for z ∈ Int(SR0,δ) and

h ∈ C small, f(z + h) = f(z) + f ′(z)h+ h2
∫ 1
0 f

(2)(z + th)(1 − t)dt. So, for v ∈ Int(B4R0,2δ(H
1+σ
D )),

we can write

f(v(x) + r(x)) = f(v(x)) + f ′(v(x))r(x) + r(x)2
∫ 1

0
f (2)(v(x) + tr(x))(1 − t)dt, (3.10)

for r ∈ Bη,η(H1+σ
D ) (for some η depending on v). Since f , f ′ and f (2) are smooth functions on the

range of v+tr for any t ∈ [0, 1], as before, we get that all terms in (3.10) are well defined and bounded
in H1+σ. The Dirichlet boundary condition being satisfied for each of the three terms, we conclude
that f is C-differentiable at v, as in Definition A3, with derivative r 7→ f ′(v)r which is continuous
C-linear from H1+σ

D + iH1+σ
D into H1+σ

D + iH1+σ
D and therefore into Hσ+ε

D + iHσ+ε
D . Therefore, f

can be extended to admit a bounded holomorphic extension from B4R0,2δ(H
1+σ
D ) into Hσ+ε

D + iHσ+ε
D

and the required extension holds for F after composition by linear bounded functions. □
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3.1.1. Well posedness theory. For d ≤ 2, and with assumption (1.2) for 1 ≤ p < +∞, the well-
posedness theory in H1 × L2 can be performed with Sobolev embedding, so we omit the details.
Assume that M is of dimension d = 3. Later on, we will need to use some results related to the
global existence and uniqueness of solutions of the semilinear wave equation in the subcritical case.
We will briefly recall them.

A central argument to handle the subcritical case in dimension d = 3 is the use of Strichartz
estimates. They have a long history. We only quote the results that we use and refer to the references
therein for historical background. For general domains with boundary, Strichartz estimates were
proved by Burq, Lebeau and Planchon [BLP08] and later, the range of admissible exponents was
extended by Blair, Smith and Sogge [BSS09, Corollary 1.2] leading to the following theorem.

Theorem 3.3. (Strichartz estimates) Let T > 0 and (q, r) satisfying

1

q
+

3

r
=

1

2
, q ∈ [7/2,+∞]. (3.11)

There exists C = C(T, q) > 0 such that for every G ∈ L1([0, T ], L2(M)) and every (u0, u1) ∈ X,
the mild solution u of  ∂2t u− ∆gu = G(t)

u|∂M = 0
(u, ∂tu)(0) = (u0, u1)

satisfies the estimate

∥u∥Lq([0,T ],Lr(M)) ≤ C
(
∥(u0, u1)∥H1(M)×L2(M) + ∥G∥L1([0,T ],L2(M))

)
.

Without loss of generality, it can be assumed that p ∈ (3, 5) for the bound on f in (1.2). The
exponent p = 3 is the exponent where Strichartz are no longer necessary and so the cases p ∈ [1, 3]
can be managed using appropriate Sobolev embeddings. Observe that it is enough to consider the

pair of exponents (q, r) = ( 2p
p−3 , 2p), since they give up ∈ L

2
p−3 ([0, T ], L2(M)) ⊂ L1([0, T ], L2(M))

because 1 < 2
p−3 < +∞. Once the Strichartz estimates are obtained, the global well-posedness is

classical for subcritical nonlinearities. It first appeared in [BLP08] for general bounded domains.
We will need the following well-posedness result.

Theorem 3.4. (Cauchy problem) Let f satisfies (1.2) and (1.4). For any T > 0 and for any
(u0, u1) ∈ X = H1

0 (M)×L2(M) there exists a unique solution U(t) = (u(t), ∂tu(t)) ∈ C0([0, T ], X)
with finite Strichartz norm of (3.4). Moreover, for any E0 ≥ 0 and (q, r) satisfying (3.11), there
exists a constant C > 0 such that, if U = (u, ∂tu) is solution of (3.4) with E(u(0)) ≤ E0, then

∥u∥Lq([0,T ],Lr(M)) ≤ C∥(u0, u1)∥H1(M)×L2(M).

In addition, there exists a constant C > 0 such that, if U and Ũ are two solutions of (1.1) with
E(u(0)) ≤ E0 and E(v(0)) ≤ E0, then

sup
[−T,T ]

∥(u, ∂tu)(t) − (ũ, ∂tũ)(t)∥X ≤ C∥(u, ∂tu)(0) − (ũ, ∂tũ)(0)∥X .

The exact previous statement result including Lipschitz stability can be found in [JL13, Theorem
2.2].

3.1.2. Observability of linear waves at higher regularity. A crucial tool in the present section will be
an observability inequality of linear waves, but at an appropriate regularity. We start by recalling
the following classical observability result from Bardos-Lebeau-Rauch [BLR88] in the case ∂M ≠ ∅.
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Theorem 3.5. [BLR88] Assume that (ω, T ) satisfies GCC. Then, there exists C > 0 such that for
any (v0, v1) ∈ H1

0 (M) × L2(M) and associated solution v of ∂2t v − ∆gv = 0 (t, x) ∈ [0, T ] ×M,
v|∂M = 0 (t, x) ∈ [0, T ] × ∂M,

(v, ∂tv)(0) = (v0, v1) x ∈ M,
(3.12)

we have

C∥(v0, v1)∥2H1
0 (M)×L2(M) ≤

∫ T

0
∥1ω∂tv(t)∥2L2(M)dt. (3.13)

We are now going to give several variants of this observability inequality. It is certainly folklore
in the field that all these variations might be obtained from GCC, but we did not find the precise
statements that we need. At the completion of this work, we realized that Perrin [Per23] already
considered similar changes of regularity, especially for boundary observability, but it does not seem
to be exactly the required statement, even if very close. We decided to keep our short proofs starting
from results explicitly written in the literature. From now on we assume that (ω, T ) satisfies the
GCC and bω is a smooth function defined on M so that

bω(x) ≥ 1 for x ∈ ω. (3.14)

Therefore, (3.13) implies

∥(v0, v1)∥2H1
0 (M)×L2(M) ≤ C2

∫ T

0
∥bω∂tv(t)∥2L2(M)dt, (3.15)

for any (z0, z1) ∈ H1
0 (M) × L2(M).

Let β ≥ 0 and let us consider z solution of ∂2t z − ∆gz + βz = 0 (t, x) ∈ [0, T ] ×M,
z|∂M = 0 (t, x) ∈ [0, T ] × ∂M if ∂M ≠ ∅,

(z, ∂tz)(0) = (z0, z1) x ∈ M,
(3.16)

with (z0, z1) ∈ H1
0 (M) × L2(M). The associated energy to this system is given by

E(z, ∂tz) =
1

2

∫
M

(
|∂tz|2 + |∇z|2 + β|z|2

)
dx, (3.17)

which is known to be conserved through time, namely, that E(z(t), ∂tz(t)) = E(z0, z1) for all
t ∈ (0, T ). In the case ∂M = ∅, from the work of Rauch-Taylor [RT74], it is understood that
the observability inequality (3.12) still holds for (3.16) under the GCC. Yet, they proved such an
inequality for a damped wave equation. While the same idea applies in our case, for the convenience
of the reader, we will briefly outline how this inequality can be obtained for system (3.16), following
the work of Laurent-Léautaud [LL16]. In particular, the observation will be made through a smooth
function bω supported on ω. In what follows, we assume that β > 0 if ∂M = ∅ or β ≥ 0 otherwise.

Proposition 3.6. Assume that (ω, T ) satisfies GCC and bω satisfies (3.14). Then, there exists
C > 0 such that for any (z0, z1) ∈ H1

0 (M) × L2(M) and associated solution z of (3.16), we have

C∥(z0, z1)∥2H1
0 (M)×L2(M) ≤

∫ T

0
∥bω∂tz(t)∥2L2(M)dt. (3.18)

Proof. Let us first assume that ∂M = ∅ and β > 0. In order to observe the component ∂tz, with a
slight modification of [LL16, Proposition 2.2] along with Garding’s inequality [LL16, Theorem A.9]
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(see also [CLW20, Theorem 1.3.] for an equivalence with ODE along bicharacteristics, also valid for
systems), we obtain the weak observability inequality

CE(z0, z1) ≤
∫ T

0
∥bω∂tz∥2L2(M)dt+ ∥(z0, z1)∥2H1/2×H−1/2(M)

.

Now, by employing a nowadays classical compactness-uniqueness argument (as in Proposition 4.5
below), we get rid of the compact term in the right-hand side of the above inequality, which leads
us to (3.18).

Let us now treat the case ∂M ̸= ∅, with β ≥ 0. It follows the same argument as [LL16,
Theorem 1.5]. Let us consider v solution of (3.12), but with the same initial data as z, namely,
(v, ∂tv)(0) = (z0, z1). Therefore, w = v − z solves ∂2tw − ∆gw = βz

w|∂M = 0
(w, ∂tw)(0) = (0, 0).

Now, energy estimates for the above equation lead us to∫ T

0
∥bω∂w∥2L2(M)dt ≤ C∥∂tw∥2L∞([0,T ],L2(M)) ≤ C∥z∥2L2([0,T ],L2(M)).

By applying the observability estimate to v, we get

C1∥(z0, z1)∥2H1
0 (M)×L2(M) ≤ 2

∫ T

0
∥bω∂tz(t)∥2L2(M)dt+ 2

∫ T

0
∥bωw(t)∥2L2(M)dt.

Combining the two previous inequalities, we obtain

C1∥(z0, z1)∥2H1
0 (M)×L2(M) ≤ 2

∫ T

0
∥bω∂tz(t)∥2L2(M)dt+ 2C∥z∥2L2([0,T ],L2(M)).

Once again, a compactness-uniqueness argument leads us to (3.18). □

The following variant with observation in H1 is a direct consequence of the previous result, but,
apparently, is not written this way in the literature. We provide a proof for the convenience of the
reader.

Proposition 3.7. Assume that (ω, T ) satisfies GCC and bω satisfies (3.14). Then, there exists
C > 0 such that for any (z0, z1) ∈ H1

0 (M) × L2(M) and associated solution z of (3.16) we have

C∥(z0, z1)∥2H1
0 (M)×L2(M) ≤

∫ T

0
∥bωz(t)∥2H1

0 (M)dt. (3.19)

Proof. By Lemma A14, we can find (ω̃, T̃ ) satisfying the GCC and bω̃ supported in ω with bω̃ = 1

on ω̃ and T̃ < T . Let T ′, T ′′ ∈ (0, T ) and ρ ∈ C∞
c (R,R+) be such that T ′′ − T ′ > T̃ , ρ ≡ 1 on

(T ′, T ′′) and supp(ρ) ⊂ (0, T ).

Since the observability estimate (3.18) holds for the pair (ω̃, T̃ ) with bω̃, we can employ it to find

a constant C̃1 > 0 such that

∥(z0, z1)∥2H1
0 (M)×L2(M) ≤ C̃1

∫ T̃

0
∥bω̃∂tz(t)∥2L2(M)dt. (3.20)

Noticing that there exists α > 0 so that |bω̃| ≤ α|bω|, we have

∥(z0, z1)∥2H1
0 (M)×L2(M) ≤ C̃1

∫ T̃

0
∥bω̃∂tz(t)∥2L2(M)dt ≤ C1

∫ T

0
ρ(t)∥bω∂tz(t)∥2L2(M)dt. (3.21)



29

We aim to find a proper bound of the right-hand side in the above inequality. Let us multiply the
equation ∂2t z −∆gz + βz = 0 by the multiplier ρb2ωz and then perform integration by parts both in
time and space on [0, T ] ×M to obtain the identity∫ T

0
ρ(t)∥bω∂tz∥2L2(M)dt =

∫ T

0
ρ(t)∥bω∇z∥2L2(M)dt+ β

∫ T

0
ρ(t)∥bωz∥2L2(M)dt

+ 2

∫∫
[0,T ]×M

ρ(t)bωz∇bω · ∇zdxdt+

∫∫
[0,T ]×M

ρ′(t)b2ωz∂tzdt.

On the right-hand side, we can complete the square to obtain∫ T

0
ρ(t)∥bω∂tz∥2L2(M)dt =

∫ T

0
ρ(t)∥∇(bωz)∥2L2(M)dt+ β

∫ T

0
ρ(t)∥bωz∥2L2(M)dt

+

∫∫
[0,T ]×M

ρ′(t)b2ωz∂tzdt−
∫ T

0
ρ(t)∥z∇bω∥2L2(M). (3.22)

By using Cauchy-Schwarz and then energy estimates, we get, for any ε > 0,∣∣∣∣∣
∫∫

[0,T ]×M
ρ′(t)b2ωz∂tzdt

∣∣∣∣∣ ≤
∫ T

0
|ρ′(t)|∥bωz∥L2(M)∥bω∂tz∥L2(M)dt

≤ 1

2ε

∫ T

0
∥bωz∥2L2(M)dt+

ε

2

∫ T

0
|ρ′(t)|2∥bω∂tz∥2L2(M)dt

≤ 1

2ε

∫ T

0
∥bωz∥2L2(M)dt+

Cε

2
∥(z0, z1)∥2H1(M)×L2(M).

By plugging the above estimate in (3.22), we get∫ T

0
ρ(t)∥bω∂tz∥2L2(M)dt ≤ C

(∫ T

0
∥bωz∥2L2(M)dt+

∫ T

0
ρ(t)∥bωz∥2H1

0 (M)dt

)
+ Cε∥(z0, z1)∥2H1(M)×L2(M). (3.23)

Observe that, on the right-hand side, the first term in parenthesis can be bounded by above by
L2([0, T ], H1

0 (M))-norm of bωz. By choosing ε > 0 small enough, we conclude by plugging (3.23)
into (3.21). □

Assume that (z0, z1) ∈ (H2(M) ∩H1
0 (M)) ×H1

0 (M). Take y = ∂tz and observe that it solves ∂2t y − ∆gy + βy = 0
y|∂M = 0 if ∂M ≠ ∅

(y, ∂ty)(0) = (z1, (∆g − β)z0),
(3.24)

with (z1, (∆g − β)z0) ∈ H1
0 (M) ×L2(M). Applying the observability inequality (3.19) with bωy as

observation and then going back to the z variable, we get

∥(z0, z1)∥2(H2(M)∩H1
0 (M))×H1

0 (M) ≤ C2

∫ T

0
∥bω∂tz(t)∥2H1

0 (M)dt.

Let us consider the observation operator C ∈ L(Xσ, Xσ) given by

C(ϕ, ψ) = (0, bωψ). (3.25)

With the operator’s notation of Section 3.1, we have obtained the inequality

∥Z0∥2D(A) ≤ C

∫ T

0
∥CetAZ0∥2D(A)dt. (3.26)
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By linear interpolation in between inequalities (3.15) and (3.26), we obtain the following result. We
also refer to [Per23] for the link between observability at different levels of regularity.

Proposition 3.8. Assume that (ω, T ) satisfies GCC and bω satisfies (3.14). Then, for C defined
by (3.25), there exists Cobs > 0 such that for any σ ∈ [0, 1] and Z0 ∈ Xσ we have

∥Z0∥2Xσ ≤ C2
obs

∫ T

0
∥CetAZ0∥2Xσdt. (3.27)

The previous result shows that, if (ω, T ) satisfies the GCC, then t 7→ etA satisfies Assumption 2a
with σ ∈ [0, 1], T > 0 and observation operator C given by (3.25).

We also show that the pair (A,C) satisfies Assumption 4.

Proposition 3.9. Let σ ∈ [0, 1] \ {1/2}. Then, if C is given by (3.25) with bω smooth satisfying
∂n⃗bω = 0, then Assumption 4 is fulfilled with s = 1 as long as ε ≤ 1.

Proof. We compute [A∗A,C] =
(

0 0
0 [bω ,∆g ]

)
so that the result is true as long as [bω,∆g] = −2∇gbω ·

∇g − ∆gbω sends Hσ+2
D into Hσ+ε

D . We claim that [bω,∆g] sends Hσ+2
D into Hσ+1

D when σ ∈
[0, 1] \ {1/2}, which will give the result since ε ≤ 1.

Since bω is smooth and σ ∈ [0, 1] \ {1/2}, we only need to verify that the term ∇bω · ∇u is
indeed zero on ∂M. Decomposing ∇g = ∂n⃗ + ∇T where ∇T is the tangential derivative, we can
write ∇bω · ∇u = ∂n⃗bω∂n⃗u+ ∇T bω · ∇Tu. The first term is zero on the boundary since we assumed
∂n⃗bω = 0 while the second term ∇Tu cancels since u = 0 on ∂M. This proves the claimed result. □

3.2. Propagation of analyticity. Here we prove Theorem 1.1 and then Corollary 1.2.

Proof of Theorem 1.1. According to Lemma A14, there exist χ ∈ C∞
c (ω) with non negative values

so that

• there exists a nonempty open set ω̃ which is compactly contained in ω and a time 0 < T̃ < T
such that (ω̃, T̃ ) satisfies the GCC and χ = 1 on ω̃,

• ∂n⃗χ = 0 on ∂M where ∂n⃗ is the normal derivative to the boundary.

Let χ2 ∈ C∞
c (ω) so that χ2 = 1 on supp(χ). Since χ2 is a cutoff function whose support is

contained on ω, by hypothesis, we get that t 7→ χ2u(t) is analytic with value in H1+σ ∩ H1
0 (M).

Note that up to exchanging (0, T ) with a compact subinterval so that the geometric control condition
is still satisfied, we can assume without loss of generality that the analyticity holds in a neighborhood
of (0, T ). In the same way as done in the proof of Proposition 3.9, we verify that the application
[∆g, χ] maps H1+σ∩H1

0 (M) into Hσ
0 (M) when σ ∈ [0, 1]\{1/2}. By composition of analytic maps,

and noticing that [∆g, χ] = χ2[∆g, χ] = [∆g, χ]χ2, we get that the map

t ∈ (0, T ) 7→ [∆g, χ]u ∈ Hσ
0 (M)

is analytic.
By writing u = χu+ (1 − χ)u, it remains to show that t 7→ (1 − χ)u is analytic. Set χ̃ = (1 − χ)

and consider the new variable z = χ̃u. We then have

∂2t z − ∆gz + βz = χ̃(∂2t u− ∆gu) + βz + [∆g, χ̃]u = −χ̃f(u) + βz − [∆g, χ]u

= −χ̃f(z + χu) + βz − [∆g, χ]u = −χ̃f(z + h1) + β(z + h1) + h2 − βh1

where we have defined the functions h1 = χu and h2 = −[∆g, χ]u.
Let σ∗ ∈ (1/2, σ) if d = 3 and σ∗ ∈ (0, σ) if d ≤ 2. Now, we define{

t ∈ [0, T ] 7−→ H1(t) = (χu(t), 0) ∈ Xσ∗ ,
t ∈ [0, T ] 7−→ H2(t) = (0,−[∆g, χ]u(t) − βχu(t)) ∈ Xσ.
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Thanks to the previous discussion, H1 ∈ C0([0, T ], Xσ∗) andH2 ∈ C0([0, T ], Xσ). Since ∥U∥C0([0,T ],Xσ) ≤
M for some M > 0, it follows that

H1 ∈ B[0,T ]
CM (Xσ∗) and H2 ∈ B[0,T ]

CM (Xσ),

for some C = C(χ, χ2) = C(ω) > 0. Since t ∈ (0, T ) 7→ χu ∈ H1+σ∗(M)∩H1
0 (M) and t ∈ (0, T ) 7→

[∆, χ]u ∈ Hσ
0 (M) are analytic, an application of Theorem A13 and compactness, gives the existence

of µ > 0 so that H1 and H2 can be extended holomorphically as{
z ∈ (0, T ) + i(−µ, µ) 7−→ H1(z) = (χu(z), 0) ∈ Xσ∗

C ,
z ∈ (0, T ) + i(−µ, µ) 7−→ H2(z) = (0,−[∆g, χ]u(z) − βχu(z)) ∈ Xσ

C.

Moreover, since ℜ(H1(z)) ∈ BCM (Xσ∗) for z ∈ [0, T ] + i{0}, by shrinking µ > 0 if necessary,
by continuity and compactness, we can assume that ℜ(H1(z)) ∈ B2CM (Xσ∗) for every z ∈ [0, T ] +
i[−µ, µ].

Applying Lemma A14 again to (ω̃, T̃ ), we can find (ω̃1, T̃1) satisfying GCC and b ∈ C∞
c (ω̃) so

that b = 1 on ω̃1 and 0 < T̃1 < T̃ < T . Defining C by C(ϕ, ψ) = (0, bψ) as in (3.25), Proposition
3.8 gives the following observability estimate

∥Z0∥2Xσ∗ ≤ C2
obs

∫ T̃1

0
∥CetAZ0∥2Xσ∗dt (3.28)

and the same observability at the level of regularity Xσ.
Observe that χ = 1 on ω̃, then z = (1−χ)u = 0 on ω̃. Then, since b ∈ C∞

c (ω̃), it implies b∂tz = 0
on [0, T ] ×M. Finally, we see that Z = (z, ∂tz) satisfies the system{

∂tZ = AZ + F (Z +H1) +H2 on [0, T ]
CZ(t) = 0 for t ∈ [0, T ]

(3.29)

where F is as in (3.3). We are then in the framework of Theorem 1.7 with (T ∗, T ), (σ, ε) and R0

of the Theorem replaced by (T, T̃1), (σ∗, σ − σ∗) and 2CM , respectively. Assumption 3 is fulfilled
thanks to Proposition 3.2. The observability estimate (3.28) for σ and σ∗ ensures Assumption 2.
We deduce that t ∈ (0, T ) 7→ Z(t) ∈ Xσ∗ is real analytic, hence t ∈ (0, T ) 7→ U(t, ·) ∈ Xσ∗ is real
analytic as well.

Observe that t ∈ (0, T ) 7→ ∂tU(t, ·) ∈ Xσ∗ is an analytic map (see Proposition A11), and so is
t ∈ (0, T ) 7→ ∂tU(t, ·) − F (U(t, ·)) ∈ Xσ∗ where this time, F (u, v) = (0,−f(u)) (that is as in (3.3)
with χ̃ = 1 and β = 0). We readily get that the map t ∈ (0, T ) 7→ AU(t, ·) ∈ Xσ∗ is analytic. This
implies that t ∈ (0, T ) 7→ U(t, ·) ∈ X1+σ∗ is analytic as well.

For the last statement, we can use local holomorphic extension and prove that it is weakly
holomorphic, which is sufficient (see Theorem A7). Indeed, a continuous linear form L on X1+σ∗ can

be written, for some V ∈ X1+σ∗ , L(U) = ⟨V,U⟩X1+σ∗ =
〈
(A∗A)1/2V, (A∗A)1/2U

〉
Xσ∗ + ⟨V,U⟩Xσ∗ =

⟨AV,AU⟩Xσ∗ +⟨V,U⟩Xσ∗ . In particular, since AV ∈ Xσ∗ , the extension z 7→ L(U(z)) is well defined
and holomorphic. □

Proof of Corollary 1.2. We know that u admits a holomorphic extension to [0, T ]+i[−δ, δ] with value
in H1+σ(M) ∩ H1

0 (M) with σ ∈ (1/2, 1]. Let φ ∈ C∞
c (M). For any z = (t, s) ∈ [0, T ] + i[−δ, δ],

we consider the well defined quantity m(z) =
〈
∂2zu(z) − f(u(z)), φ

〉
L2(M)

−⟨u(z),∆gφ⟩L2(M). Note

that m is holomorphic by composition. Since u is holomorphic, it satisfies ∂z̄u(z) = 0 for z ∈
(0, T ) + i(−δ, δ) where ∂z̄ = 1

2 (∂t + i∂s). In particular, ∂zu(z) = ∂tu(z) = 1
i ∂su(z) with equality

meant in H1+σ ∩ H1
0 . Moreover, if we restrict m to the real interval (0, T ), we know that it is

zero since u|(0,T ) is solution of (1.1). By analytic continuation, we conclude that m(z) = 0 for

z ∈ (0, T ) + i(−δ, δ). That means that ∂2z ⟨u(z), φ⟩L2(M) = ⟨f(u(z)), φ⟩L2(M) + ⟨u(z),∆gφ⟩L2(M)

for any φ ∈ C∞
c (M) and z ∈ (0, T ) + i(−δ, δ).
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Now, for any t0 ∈ (0, T ), we consider the function v ∈ C∞((−δ, δ), H1+σ ∩ H1
0 (M)) defined by

s ∈ (−δ, δ) 7→ v(s) := u(t0 + is) ∈ H1+σ ∩H1
0 (M). For any φ ∈ C∞

c (M), we compute

∂2s ⟨v(s), φ⟩L2(M) =
〈
∂2sv(s), φ

〉
L2(M)

= −
〈
∂2zu(t0 + is), φ

〉
L2(M)

= −⟨f(u(t0 + is)), φ⟩L2(M) − ⟨u(t0 + is),∆gφ⟩L2(M)

= −⟨f(v(s)), φ⟩L2(M) − ⟨v(s),∆gφ⟩L2(M) .

In particular, v is solution, in the distributional sense of ∂2sv + ∆gv = −f(v) on (−δ, δ) ×M with
Dirichlet boundary condition on ∂M. Since v ∈ C∞((−δ, δ), H1+σ ∩H1

0 (M)) ⊂ C0((−δ, δ) ×M),
standard elliptic regularity states that v is smooth and therefore analytic, see for instance Friedman
[Fri58, Theorem 5]. In particular, it gives that for any x0 ∈ M, in some charts around x0, there
exists R > 0 and C > 0 so that ∣∣∣∂αs ∂βxv(0, x0)

∣∣∣ ≤ CRα+|β|α!β!.

By definition of u and holomorphy with value in H1+σ ∩ H1
0 we have ∂αs v(0) = (i∂t)

αu(t0) with
equality in H1+σ ∩ H1

0 . Since the valuation at x0 ∈ M is continuous on H1+σ ∩ H1
0 , we get

∂αs v(0, x0) = (i∂t)
αu(t0, x0) for any x0 ∈ M. Taking derivative in x0 now, we have ∂αs ∂

β
xv(0, x0) =

(i∂t)
α∂βxu(t0, x0). So, we obtain ∣∣∣∂αt ∂βxu(t0, x0)

∣∣∣ ≤ CRα+|β|α!β!.

This is the analyticity close to (t0, x0) and gives the result since (t0, x0) ∈ (0, T )×M are arbitrary.
□

3.3. Finite determining modes. Now we show that the property of finite determining modes
holds the observed problem (1.1).

Proposition 3.10. Let σ ∈ (1/2, 1] if d = 3 and σ ∈ (0, 1/2) if d ≤ 2. With the notations of
Section 3.1, assume (ω, T ) satisfies GCC and that f ∈ C4(R,R). For any R0 > 0, there exists
n ∈ N such that the following holds. Let h ∈ C0([0, T ], Hσ

0 (M)) and g ∈ L2([0, T ], Hσ
0 (M)). Let

U(t) = (u(t), ∂tu(t)) and Ũ(t) = (ũ(t), ∂tũ(t)) be two solutions on (0, T ) of ∂2t u− ∆gu+ f(u) = h(t, x) (t, x) ∈ [0, T ] × Int(M),
u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
∂tu = g (t, x) ∈ [0, T ] × ω,

(3.30)

such that ∥U(t)∥Xσ ≤ R0 and ∥Ũ(t)∥Xσ ≤ R0 for all t ∈ [0, T ]. If PnU(t) = PnŨ(t) for all times

t ∈ [0, T ], then U(t) ≡ Ũ(t) for all t ∈ [0, T ].

Proof. We have already established in Section 3.1 that A satisfies Assumption 1. Under the hypoth-
esis that (ω, T ) satisfies the GCC, Proposition 3.8 implies Assumption 2a. Finally, from Proposition
3.2, Assumption 3a is satisfied for some ε ∈ (0, 1] where F is defined by (3.3) with χ̃ = 1. Then,
the result follows as a direct application of the abstract Proposition 2.2. □

3.4. Unique continuation and equilibrium points. Here we will consider U = (u, ∂tu) ∈
C0([0, T ], X) solution of the system ∂2t u− ∆gu+ f(u) = 0 (t, x) ∈ [0, T ] × Int(M),

u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
∂tu = 0 (t, x) ∈ [0, T ] × ω.

(3.31)

The purpose of this section is to prove Theorem 1.3.



33

3.4.1. Propagation of regularity. Here we aim to prove a regularization effect for functions satisfying
(3.31) in the subcritical case. When M is of dimension d = 2 and f has polynomial growth with
p ∈ [1,+∞), it is possible to prove a gain of regularity in the nonlinearity by means of appropriate
Sobolev embedding. The same holds when d = 3 and p ∈ [1, 3]. However, when d = 3 and
p ∈ (3, 5), this gain of regularity needs to be handled by means of Strichartz estimates. Dehman-
Lebeau-Zuazua [DLZ03, Theorem 8] proved that the nonlinearity is more regular than it seems to
be and they use this fact in a key fashion to stabilize the semilinear wave equation in an unbounded
domain. We recall such regularity result from [JL13, Corollary 4.2], which in particular fits in our
geometrical setting.

Proposition 3.11. Assume d = 3. Let R > 0 and T > 0. Let s ∈ [0, 1) and ε = min{1 − s, (5 −
p)/2, (17 − 3p)/14} > 0 with p as in (1.2). There exist (q, r) satisfying (3.11) and C > 0 such
that the following property holds. If v ∈ L∞([0, T ], H1+s(M) ∩ H1

0 (M)) is a function with finite
Strichartz norms ∥v∥Lq([0,T ],Lr(M)) ≤ R, then f(v) ∈ L1([0, T ], Hs+ε

0 (M)) and moreover

∥f(v)∥L1([0,T ],Hs+ε
0 (M)) ≤ C∥v∥L∞([0,T ],H1+s(M)∩H1

0 (M)).

The constant C depends only on M, (q, r), R and the constant in estimate (1.2).

Remark 3.3. According to the geometric framework considered in [JL13], the previous result remains
true when M is a compact perturbation of R3, that is, R3\O where O is a bounded smooth domain,
endowed with a smooth metric equal to the euclidean one outside of a ball.

With this gain of regularity at hand along with the assumption that (ω, T ) satisfies the GCC, we
are able to propagate the regularity through the observability estimate (3.27).

Proposition 3.12. Let U ∈ C0([0, T ], X) be a mild solution of the system (3.31) with finite
Strichartz norm. Then

U ∈ C0([0, T ], Xυ)

for all υ ∈ [0, 1). In particular u ∈ L∞([0, T ] ×M).

Proof. The proof is the same as Proposition 2.3, except that the nonlinear term is not bounded, yet
the Duhamel term is well defined thanks to Sobolev embedding or Strichartz estimates depending

on the case; see Remark 2.2. Therefore, we only need to check that T : t 7→
∫ t
0 e

A(t−s)F (U(s))ds
defines a bounded map from L∞([0, T ], X) into L∞([0, T ], Xε) for some ε > 0.

From [JL20, Proposition 3.2], when d = 2, we know that F maps bounded sets of X into bounded
sets of Xε for any ε ∈ [0, 1). When d = 3 and p ∈ [1, 3], the same holds with ε ∈ [0, (3 − p)/2).
When d = 3 and p ∈ (3, 5), since u ∈ H1

0 (M) and f is subcritical, Proposition 3.11 implies that
for a given ε > 0 depending on p, f(u) is globally bounded in L1([0, T ], Hε

0(M)). In any case, T is
bounded in C0([0, T ], Xε) for an appropriate choice of ε > 0.

Without loss of generality, let us now fix ε > 0 small enough so we can encompass all the
aforementioned cases simultaneously. For d = 2 and d = 3, from Proposition 3.8, Assumption 2 is
satisfied for σ = 0 and ε > 0. Let bω be given by Lemma A14 and let C be as in (3.25). Then,
Proposition 3.9 ensures that the pair (A,C) satisfies Assumption 4 with s = 1 and if ε ≤ 1. We
then reproduce the proof of Proposition 2.3 to obtain that U is bounded in C0([0, T ], Xε).

We can iterate the previous process to obtain that U is bounded in C0([0, T ], Xkε) for k ∈ N as
long as Proposition 3.11 or simply Proposition 3.2 apply. We obtain finally that U is bounded in
C0([0, T ], Xυ) for any υ ∈ [0, 1).

□

Remark 3.4. Proposition 3.12 can be easily extended with the same proof by replacing (3.31)
by equations of the form ∂2t u − ∆gu + χ(x)f(u + h1) = h2 with h1 ∈ C0([0, T ], H2

D) and h1 ∈
C0([0, T ], H1

D).
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3.4.2. On unique continuation for linear waves. Based on the works of Tataru, Robbiano-Zuily and
Hörmander, it is established that global unique continuation holds under the framework of partial
analyticity and very general geometric assumptions, provided sufficient time has passed so that we
do not contradict the finite speed of propagation. To obtain the nonlinear unique continuation
property, we will follow [JL13] and aim to treat the nonlinearity as a potential term. Therefore, we
must ensure that our framework allows for the application of the result for linear waves. In what
follows, we will recall a version of the Robbiano-Zuily-Hormander-Tataru result, which is well suited
to our specific context.

We will first introduce some geometric quantities needed to state the result. For E ⊂ M, we can
define the largest distant from E to a point in M by

L(M, E) = sup
x∈M

dist(x,E).

If E is open, the quantity

TUC(E) := 2L(M, E),

is the minimal time of unique continuation for the (linear) wave equation from an open set E, see
Tataru [Tat95]. We say that an open set ω satisfies the GCC if there exists T > 0 such that (ω, T )
satisfies the GCC. One can then define the minimal control time associated with ω by

TGCC(ω) = inf{T > 0 | (ω, T ) satisfies GCC}.
It can be proved that TGCC(ω) ≥ TUC(ω), see Laurent-Léautaud [LL16, Lemma B.4.].

Remark 3.5. For the case where ∂M = ∅, the critical time TGCC(ω) is not allowed, since, as shown
in [LL16, Theorem 1.1], the observability estimate always fails for such time.

We now state the unique continuation property for linear waves with coefficients analytic in time,
due to Tataru [Tat95, Tat99], Robbiano-Zuily [RZ98] and Hörmander [Hör97]. We refer to [LL19,
Theorem 6.1] for a quantitative statement that implies the unique continuation and contains the
construction of hypersurfaces that allows to obtain the global result.

Theorem 3.13 (Tataru-Robbiano-Zuily-Hörmander). Let M be a compact Riemannian manifold
with (or without) boundary, ∆g the Laplace-Beltrami operator on M, and

P = ∂2t − ∆g +W0∂t +W1 · ∇ + V

with V , W0, W1, div(W1) bounded and depending analytically on the variable t ∈ (0, T ). Let ω be
a nonempty open subset of M and T > 2L(M, ω). Let (u0, u1) ∈ H1

0 (M) × L2(M) and associated
solution u of  Pu = 0 in (0, T ) × Int(M)

u|∂M = 0 in (0, T ) × ∂M
(u, ∂tu)(0) = (u0, u1).

Then, if u satisfies u = 0 on [0, T ] × ω, then u = 0 on [0, T ] ×M.

3.4.3. Unique continuation for semilinear waves. We now prove Theorem 1.3 and then Proposition
1.5.

Proof of Theorem 1.3. Let U(t) = (u(t), ∂tu(t)) be a solution of (3.31), which, by Proposition 3.12,
belongs to ∈ L∞([0, T ], Xσ) for any σ ∈ (1/2, 1). For any χ ∈ C∞

c (ω), the application t ∈ (0, T ) 7→
χu(t, ·) ∈ H1+σ(M)∩H1

0 (M) does not depend on t and is therefore analytic. In particular, Theorem
1.1 applies and we get that t ∈ (0, T ) 7→ U(t) ∈ Xσ is analytic.

Since u is smooth with respect to t and f is smooth, by writing

∆gu = ∂2t u+ f(u)
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we get that ∆gu ∈ L2(M) and so u ∈ H2(M). We differentiate the above equation to obtain

∆2
gu = ∆g(∂2t u+ f(u)) = ∂2t ∆gu+ ∆gf(u)

= ∂4t u+ f ′(u)∂2t u+ f ′′(u)(∂2t u)2 + ∆gf(u)

which shows that u belongs to H4(M). This process can be repeated as many times as wanted, so
by classical Sobolev embedding we get that u = u(t, x) is smooth with respect to x. In particular,
(t, x) ∈ [0, T ] ×M 7→ u(t, x) ∈ C∞([0, T ] ×M) is bounded, together with all its derivatives.

Set z = ∂tu and observe that z solves ∂2t z − ∆gz + f ′(u)z = 0 (t, x) ∈ [0, T ] × Int(M),
z|∂M = 0 (t, x) ∈ [0, T ] × ∂M,

z = 0 (t, x) ∈ [0, T ] × ω.
(3.32)

By the previous discussion (t, x) 7→ f ′(u(t, x)) is bounded, analytic in t and smooth in x. Since
T > TGCC ≥ TUC = 2L(M, ω), we can apply Theorem 3.13 to get that z ≡ 0 everywhere. This in
turn means that u(t, x) = u(x) is constant in time and henceforth it solves{

−∆gu+ f(u) = 0 x ∈ Int(M),
u = 0 x ∈ ∂M.

(3.33)

Moreover, multiplying the latter equation by u and integrating by parts leads us to the identity

0 ≤
∫
M

|∇u(x)|2dx = −
∫
M
u(x)f(u(x))dx.

Under the assumption that sf(s) ≥ 0 for all s, the above identity, the connectedness of M and the
boundary condition imply that u ≡ 0 everywhere. In the case ∂M = ∅, we get

0 ≤
∫
M

|∇u(x)|2dx = −
∫
M
u(x)f(u(x))dx ≤ −γ

∫
M

|u(x)|2dx,

which directly implies u ≡ 0 everywhere. □

Proof of Proposition 1.5. Up to increasing R, we can assume without loss of generality that O ⋐
B(0, R). Since ∂tu vanishes on (0, T ) ×

(
R3 \B(0, R)

)
⊂ (0, T ) × ω, we have −∆u+ f(u) = 0 with

u ∈ H1(R3 \ B(0, R)). Since f is subcritical, we can use elliptic regularity and bootstrap (see, for
instance, [GT01, Theorem 9.19]) to show that u = u(x) belongs to C4,α for some α ∈ (0, 1) in the
set R3 \B(0, R).

Let us take R1 > R. We can easily construct a radial cutoff function χ ∈ C∞
c (Ω) satisfying:

• χ = 1 in B(0, R) \ O;
• χ = 0 in Ω \B(0, R1);
• ∂n⃗χ = 0 in ∂Ω = ∂O;
• supp∇χ ⊂ B(0, R1) \B(0, R).

Observe that (1−χ) is supported in R3 \B(0, R) and that u does not depend on time in such a set
and is regular in space. Henceforth, (1−χ)u is analytic as a map from (0, T ) into H1+σ(Ω)∩H1

0 (Ω),
for some σ ∈ (1/2, 1), which we fix from now on. Additionally, pick ε > 0 so that σ + ε < 1. It
remains to check that χu is analytic on the time variable t.

Let us take R̃ > R1 and consider M = B(0, R̃) \O, so that M∩ω ̸= ∅ and ∂M = ∂O∪S(0, R̃).
Since χ is 0 outside the ball B(0, R1), we can consider it as a cutoff function in C∞

c (M) with
∂n⃗χ = 0 on ∂M. Let χ̃ ∈ C∞

c (Ω) be another cutoff with the same properties as χ and χ̃ = 1 on
Supp(χ). Since the operator f is local, we have χf(u) = χf(χ̃u). The equation satisfied by z := χu
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is then  ∂2t z − ∆gz + χf(z + (1 − χ)χ̃u) − [∆g, χ]u = 0 (0, T ) ×M,
z|∂M = 0 (0, T ) × ∂M,
∂tz = 0 (0, T ) × ω̃,

(3.34)

where ω̃ = M ∩ ω. Observe that [∆g, χ] is supported in the annulus B(0, R1) \ B(0, R) ⊂ ω̃.
Moreover, due to the regularity of u in such a set (recall that it does not depend on time there) and
the condition ∂n⃗χ = 0 in ∂M, [∆g, χ]u is an analytic map from (0, T ) into H2

D(M) ⊂ Hσ+ε
D (M).

The same holds for (1−χ)χ̃u that defines an analytic map from (0, T ) into H2
D(M) ⊂ H1+σ

D , where

the cutoff χ̃ ensures the correct boundary condition on S(0, R̃). In particular, since Proposition
(3.12) still holds for the equation (3.34) (see Remark 3.4), we obtain that (z, ∂tz) ∈ C0([0, T ], Xσ).

We are then in the configuration of Theorem 1.7. As we did in the proof of Theorem 1.1, we get
that t 7→ z(t) ∈ H1+σ(M) ∩H1

0 (M) is real analytic.
Summarizing, we have proved that t ∈ (0, t) 7→ u(t) ∈ H1+σ(Ω)∩H1

0 (Ω) is analytic. A version of
Theorem 3.13 of unique continuation for linear waves for unbounded domains can be applied (see
[JL13, Corollary 3.12]), from which we get that ∂tu = 0 in the whole cylinder (0, T ) × Ω. We then
conclude as we did for Theorem 1.3. □

3.5. Observability inequality for the nonlinear equation. Once the unique continuation prop-
erty has been proved, the proof of the observability estimate follows some ideas from earlier articles.
We follow in particular, the scheme introduced in [DLZ03] with the further simplification of [JL13]
that replaced the use of microlocal defect measure by the decay of the semigroup. We follow a sim-
ilar path, except that we want to have the observability in finite time, the one of GCC. Therefore,
we have to use instead the observability estimate as a black box.

Proof of Theorem 1.4. We make the proof for d = 3 and, without loss of generality, we assume that
p ∈ (3, 5). For d ≤ 2, the proof is the same using different Strichartz norms and the polynomial
bound of the nonlinearity. To simplify the notation, we denote Z the Banach space of vectors
W = (u, v) so that W ∈ C0([0, T ], X) and u ∈ L4([0, T ], L12(M)), endowed with the natural
norm. We argue by contradiction. Assume that (1.5) is not satisfied. Then, there exists a sequence
(u0,n, u1,n) ∈ H1

0×L2(M), with ∥(u0,n, u1,n)∥H1
0×L2 ≤ R0, so that the unique solution (un, ∂tun) ∈ Z

of (1.1) satisfies ∫ T

0
∥1ω∂tun(t)∥2L2(M)dt ≤

1

n
∥(u0,n, u1,n)∥2H1

0 (M)×L2(M). (3.35)

Up to taking a subsequence, we can assume (u0,n, u1,n) converges weakly to (u0, u1) ∈ H1
0 × L2.

The global well-posedness theory for (1.1) and the defocusing assumption states that the se-
quence un is globally bounded in C0([0, T ], H1

0 (M)) with uniformly bounded Strichartz norms
L4([0, T ], L12(M)) ≤ R; see Theorem 3.4.

In particular, we can extract a subsequence (still denoted un) so that un converges weakly to
some u ∈ L4([0, T ], L12(M)).

We will prove that u is solution of the nonlinear equation with initial datum (u0, u1). More
precisely, denoting U0 = (u0, u1), the well-posedness theory allows to define the nonlinear solution

V (t) = etAU0 +

∫ t

0
eA(t−s)F (V (s))ds = Vlin + VNlin,

and we want to prove that U = V where U = (u, ∂tu). The operators A and F are defined as in
Section 3.1 with the appropriate choice of β.

Observe that the sequence (un, ∂tun) is bounded in C0([0, T ], H1
0 (M)×L2(M)). Using the Aubin-

Lions Lemma (see, for instance, [Sim87, Corollary 4]), we obtain that, for any η > 0, still up to a
subsequence, we can assume that un converges strongly to u in C0([0, T ], H1−η(M)). In particular,
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choosing η = 5−p
4 > 0, by Sobolev embedding, we conclude that un converges strongly to u in

L∞([0, T ], Lr(M)) for r = 12
7−p < 6. Using (1.2), Hölder estimates for 1

2 = 1
r + p−1

12 and p < 5, we
get

∥f(un) − f(u)∥L1([0,T ],L2(M)) ≤ ∥un − u∥L∞([0,T ],Lr(M))∥1 + up−1
n + up−1∥

L1([0,T ],L
12
p−1 (M))

≤ C∥un − u∥L∞([0,T ],Lr(M))

(
1 + ∥un∥p−1

Lp−1([0,T ],L12(M))
+ ∥u∥p−1

Lp−1([0,T ],L12(M))

)
≤ C(T )∥un − u∥L∞([0,T ],Lr(M))

(
1 + ∥un∥p−1

L4([0,T ],L12(M))
+ ∥u∥p−1

L4([0,T ],L12(M))

)
.

We obtain that f(un) converges strongly to f(u) in L1([0, T ], L2(M)). The Duhamel formulation
gives

Un(t) = etAUn
0 +

∫ t

0
eA(t−s)F (Un(s))ds = Un

lin + Un
Nlin,

with

∥Un
Nlin − VNlin∥Z −→

n→+∞
0. (3.36)

Since the application U0 7→ e·AU0 is linear continuous from X to Z, it is also continuous for the
weak topology on each space. In particular, since Un

0 converges weakly to U0 in X, we obtain that
e·AUn

0 converges weakly to e·AU0 = Vlin in L4([0, T ], L12(M)). In particular, Un converges weakly
to V in Z and U = V as expected.

We have obtained that u ∈ C0([0, T ], H1
0 (M)) ∩ L4([0, T ], L12(M)) is a mild solution of ∂2t u− ∆gu+ f(u) = 0 (t, x) ∈ [0, T ] × Int(M),

u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
(u, ∂tu)(0) = (u0, u1) x ∈ M.

Moreover, using (3.35) and taking weak limit, we get ∂tu = 0 in [0, T ] × ω. In particular, we are in
a position to apply Theorem 1.3 and we obtain u = 0. In particular, (3.36) can be written

∥Un
Nlin∥Z −→

n→+∞
0. (3.37)

The observability inequality allows to write

∥Un
0 ∥2X ≤ C2

obs

∫ T

0
∥1ω∂tunlin∥2L2(M)dt

≤ 2C2
obs

∫ T

0
∥1ω∂tun∥2L2(M)dt+ 2C2

obs

∫ T

0
∥1ω∂tunNlin∥2L2(M)dt.

When combined with (3.35) and (3.37), we obtain αn := ∥Un
0 ∥X −→

n→+∞
0.

Now that we know that the initial datum converges to zero strongly, we can ”linearize” and
consider the nonlinear solution as close to the linear one for which the observability is known. More
precisely, denote wn = un/αn mild solution of ∂2twn − ∆gwn + α−1

n f(αnwn) = 0 (t, x) ∈ [0, T ] × Int(M),
(wn)|∂M = 0 (t, x) ∈ [0, T ] × ∂M,

(wn, ∂twn)(0) = (wn,0, wn,1) x ∈ M,

with ∥(wn,0, wn,1)∥X = 1. If we write f(s) = f ′(0)s+h(s) (with f ′(0) ≥ 0 thanks to the assumption
on f), we have the estimate

|h(s)| ≤ C(|s|2 + |s|p) and |h′(s)| ≤ C(|s| + |s|p−1). (3.38)
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The new nonlinearity fn(s) = α−1
n f(αns) can be written as fn(s) = f ′(0)s+ α−1

n h(αns). In partic-
ular, hn(s) := α−1

n h(αns) satisfies, uniformly in n ∈ N,

|hn(s)| ≤ Cαn(|s|2 + |s|p) and |h′n(s)| ≤ Cαn(|s| + |s|p−1). (3.39)

Now, denoting

Ã =

(
0 I

∆g − f ′(0) 0

)
and Hn

(
u
v

)
=

(
0

−hn(u)

)
,

we have

Wn(t) = etÃWn
0 +

∫ t

0
eÃ(t−s)Hn(Wn(s))ds = Wn

lin +Wn
Nlin,

with

∥Wn
lin∥Z ≤ C (3.40)

∥Wn
Nlin∥Z ≤ Cαn∥Wn∥C0([0,T ],X)(∥wn∥L4([0,T ],L12(M)) + ∥wn∥p−1

L4([0,T ],L12(M))
). (3.41)

This gives

∥Wn∥Z ≤ C + Cαn

(
∥Wn∥2Z + ∥Wn∥pZ

)
.

In particular, a bootstrap argument (see for instance [BG99, Lemma 2.2.] for a slightly different
case) allows to prove, for n large enough,

∥Wn∥Z ≤ 2C,

which, after getting back to (3.41) gives

∥Wn
Nlin∥Z ≤ Cαn.

Now, we are in position to apply the observability estimate of Proposition 3.8, taking into account
that the assumptions imply f ′(0) > 0 when ∂M = ∅. We then write it for Wn

lin = (wn
lin, ∂tw

n
lin),

∥(w0,n, w1,n)∥2H1
0 (M)×L2(M) ≤ C

∫ T

0
∥1ω∂twn

lin(t)∥2L2(M)dt

≤ C

∫ T

0
∥1ω∂twn

Nlin(t)∥2L2(M)dt+ C

∫ T

0
∥1ω∂twn(t)∥2L2(M)dt.

Concerning the first term, we use energy estimates and get∫ T

0
∥1ω∂twn

Nlin(t)∥2L2(M)dt ≤ C∥Wn
Nlin∥2Z ≤ Cα2

n.

For the second term, estimate (3.35) with the scaling wn = un/αn and αn = ∥(u0,n, u1,n)∥H1
0 (M)×L2(M)

can be written ∫ T

0
∥1ω∂twn(t)∥2L2(M)dt ≤

1

n
.

The combination of the previous estimates give

∥(w0,n, w1,n)∥2H1
0 (M)×L2(M) ≤ Cα2

n +
C

n
.

Yet, ∥(w0,n, w1,n)∥H1
0 (M)×L2(M) = 1, which is a contradiction. □

4. Applications to the Plate equation

In this section, we will give another application of the abstract Theorem 1.7 concerning the plate
equation. The purpose will be to obtain Theorem 1.6. We begin by presenting the equation and
notations.
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4.1. Semilinear Plate equation. Let T > 0. Let us consider M to be a compact connected
Riemannian manifold with smooth boundary ∂M and the hinged semilinear plate equation

∂2t u+ ∆2
gu+ f(u) = 0 (t, x) ∈ [0, T ] ×M,

u|∂M = ∆u|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
(u, ∂tu)(0) = (u0, u1) x ∈ M,

(4.1)

where (u0, u1) ∈
(
H2(M) ∩ H1

0 (M)
)
∩ L2(M) and f : R → R is assumed to be analytic and to

satisfy f(0) = 0.
Given the abstract result described in Section 1.3 and the strategy we have used to obtain unique

continuation property for the wave equation, it is then natural to ask if it also holds for system
(4.1) when the nonlinearity is assumed to be analytic.

4.1.1. Notation. Let A0 = −∆g be the Laplace-Beltrami operator, equipped with Dirichlet bound-
ary conditions if ∂M ̸= ∅. Recall that A0 : D(A0) → L2(M) is a self-adjoint and nonnega-
tive operator. In this case, its domain is given by D(A0) = H2(M) ∩ H1

0 (M) on L2(M). Set
X = D(A0) × L2(M) and introduce the densely defined operator A : D(A) → X given by

A =

(
0 I

−A2
0 0

)
with D(A) = D(A2

0) ×D(A0).

Since A0 is self-adjoint, then A2
0 is a strictly positive operator and so A is skew-adjoint. As for

the wave operator, a simple computation then shows that AA∗ = −A2 has compact resolvent,
henceforth A satisfies Assumption 1 on X.

For σ ∈ [0, 1], in this section, Xσ denotes the space

Xσ = D(A1+σ
0 ) ×D(Aσ

0 ) = H2+2σ
D ×H2σ

D ,

where we recall the notation introduced in (3.1). By Stone’s theorem, A generates a unitary C0-
group on X and D(A). By linear interpolation, so it does on Xσ for any σ ∈ [0, 1].

Remark 4.1. We have chosen to consider the hinged boundary conditions for simplicity. Other
boundary conditions could have been considered, but they would require a more careful analysis;
see [ET15].

For some χ̃ ∈ C∞(M) to be chosen later, we set F ∈ C0(X) to be the map

F : (u, v) ∈ X 7−→ (0,−χ̃f(u)) ∈ X.

Following the exact same steps of Proposition 3.2 and adapting the spaces to this setup, we have
an analogous result for F . We only need to notice that for d ≤ 3, H2

D ⊂ L∞.

Proposition 4.1. Set σ = 0 and d ≤ 3. If f is real analytic and f(0) = 0, then F satisfies
Assumption 3 for some ε > 0.

4.2. From Schrödinger’s to Plate’s observability. The objective of this section is to discuss
abstractly Lebeau’s strategy [Leb92] for deriving an observability inequality for the Plate equation
from that of Schrödinger. This analysis is based on the observation that, under hinged boundary
conditions, the bi-Laplace operator is precisely the square root of the Dirichlet-Laplace operator.

4.2.1. Abstract framework for transferring observability estimates. Let H0 and Y be Hilbert spaces
with norms ∥·∥0 and ∥·∥Y , with H0 separable. Let A be self-adjoint, positive4 and boundedly
invertible unbounded operator on H0 with domain D(A). Furthermore, we assume that A has
compact resolvents.

4In the application, the operator A will sometimes only be nonnegative because of the eigenvalue 0. Yet, we will easily
treat this subspace and this assumption makes the proof easier to write.
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We introduce the Sobolev scale of spaces based on A. For any s > 0, let Hs denote the Hilbert
space D(As/2) with the norm ∥x∥s = ∥As/2x∥0 (which is equivalent to the graph norm ∥x∥0+∥x∥s =

∥As/2x∥0 since 0 ∈ ρ(A)). We identify H0 with its dual with respect to its inner product (i.e. we will
use it as a pivot space). Let H−s denote the dual of Hs. Since Hs is densely continuously embedded
in H0, the pivot space H0 is densely continuously embedded in H−s, and H−s is the completion of
H0 with respect to the norm ∥x∥−s = ∥A−s/2x∥0. We will still denote by A the restriction of A
to Hs with domain Hs+2. It is self-adjoint with respect to the Hs scalar product. By the spectral
theorem, there exists an orthonormal basis of H0 consisting of eigenfunctions of A. Let us denote
it by {(ek, λk)}k, where Aek = λkek for each k. In such case, we can characterize the Hs-norm as
follows,

∥x∥2s =
∑
k∈N

λsk|xk|2, ∀s ∈ R

where x =
∑

k∈N xkek. We will also make the technical assumption that there exists N ∈ N so that∑
k∈N

λ−N
k < +∞. (4.2)

Let C ∈ L(H2, Y ). Let us consider the first order system for A,{
ψ̇(t) − iAψ(t) = 0, ψ(0) = ψ0 ∈ H0, y(t) = Cψ(t). (4.3)

We assume that C is an admissible observation operator for ei·A, that means, for some τ > 0 (and
thus for any times by the group property), there exists Kτ ≥ 0 such that∫ τ

0
∥CeitAψ0∥2Y dt ≤ Kτ∥ψ0∥2H0

, ∀ψ0 ∈ H2.

Remark 4.2. Under the admissibility assumption, the output map ψ0 7→ Cψ0 from H2 to L2
loc(R, Y )

has a continuous extension to H0.

Definition 4.2. Let −∞ < τ1 < τ2 < ∞. We say that system (4.3) is weakly observable by C in
(τ1, τ2) if there exists C > 0 such that

∥ψ0∥2H0
≤ C

(∫ τ2

τ1

∥CeitAψ0∥2Y dt+ ∥ψ0∥2H−2

)
,

for any ψ0 ∈ H0.

Note that the conservation of H0 and H−2-norms and translation invariance in time show that
it is equivalent to state it for τ1 = 0, the only relevant quantity being τ2 − τ1. Moreover, changing
ψ(t) to ψ(−t) allows to get the same result for e−itA.

Consider the second-order observability system{
z̈(t) +A2z(t) = 0,
z(0) = z0 ∈ H2, ż(0) = z1 ∈ H0,

(4.4)

with the observation being either

y(t) = CAz(t) or y(t) = Cż(t).

System (4.4) can be recast as a first order system, with x(t) = (z(t), ż(t)) ∈ X = H2 ×H0,

A(z0, z1) := (z1,−A2z0) with D(A) = H4 ×H2,

considering as possible observations

C(z0, z1) = CAz0 (4.5)

C1(z0, z1) = Cz1. (4.6)
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Note that C ∈ L(H4 ×H2, Y ) is admissible for e·Aand the same holds for C1.

Proposition 4.3. Let 0 < T̃ < T <∞. If the Schrödinger-like equation (4.3) is weakly observable

by C ∈ L(H2, Y ) on (0, T̃ ), then, the Plate-like equation (4.4) is weakly observable by C or C1 on
(0, T ) defined in (4.5). That means, there exists C1 > 0 such that

∥(z0, z1)∥2H2×H0
≤ C1

(∫ T

0
∥CetA(z0, z1)∥2Y dt+ ∥(z0, z1)∥2H0×H−2

)
, (4.7)

∥(z0, z1)∥2H2×H0
≤ C1

(∫ T

0
∥C1e

tA(z0, z1)∥2Y dt+ ∥(z0, z1)∥2H0×H−2

)
, (4.8)

for all (z0, z1) ∈ H2 ×H0.

Proof. Based on the factorization z̈ +A2z = (∂t + iA)(∂t − iA)z, we introduce the splitting

z+ =
1

2
(z0 − iA−1z1), z− =

1

2
(z0 + iA−1z1),

so that

z0 = z+ + z−, z1 = iA(z+ − z−).

Consequently (z(t), ż(t)) = etA(z0, z1), solution of (4.4), can be rewritten as

z(t) = eitAz+ + e−itAz−.

For any s ∈ R, denote by Λ : Hs×Hs−2 → Hs×Hs the isomorphism corresponding to the previous
splitting Λ(z0, z1) = (z+, z−). Observe that it is almost an isometry

∥(z0, z1)∥2Hs×Hs−2
= ∥z+ + z−∥2Hs

+ ∥A(z+ − z−)∥2Hs−2
= 2

(
∥z+∥2Hs

+ ∥z−∥2Hs

)
.

By considering the above splitting, we can write for the Hs × Hs−2-energy of the system (4.4) as
follows

Es(z0, z1) =
1

2
∥(z0, z1)∥2Hs×Hs−2

= Es(Λ−1(z+, z−)).

Let T ′, T ′′ ∈ (0, T ) and ρ ∈ C∞
c (R,R+) be such that T ′′ − T ′ > T̃ , ρ ≡ 1 on (T ′, T ′′) and

supp(ρ) ⊂ (0, T ). We have the identity∫ T

0
∥ρ(t)CetA(z0, z1)∥2Y =

∫ T

0
∥ρ(t)CAeitAz+∥2Y dt+

∫ T

0
∥ρ(t)CAe−itAz−∥2Y dt

+ 2ℜ
∫ T

0
ρ2(t)⟨CAeitAz+, CAe−itAz−⟩Y dt.

while∫ T

0
∥ρ(t)C1e

tA(z0, z1)∥2Y =

∫ T

0
∥ρ(t)CAeitAz+∥2Y dt+

∫ T

0
∥ρ(t)CAe−itAz−∥2Y dt

− 2ℜ
∫ T

0
ρ2(t)⟨CAeitAz+, CAe−itAz−⟩Y dt.

On the one hand, since A and e±i·A commute, the weak observability inequality for (4.3) implies∫ T

0
∥ρ(t)CAe±itAz±∥2Y dt ≥

1

C

(
∥Az±∥2H0

− ∥Az±∥2H−2

)
.

Putting the two inequalities together, we get∫ T

0
∥ρ(t)CAeitAz+∥2Y dt+

∫ T

0
∥ρ(t)CAe−itAz−∥2Y dt ≥

1

2C

(
E2(Λ−1(z0, z1)) − E0(Λ−1(z0, z1))
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=
1

2C

(
E2(z0, z1) − E0(z0, z1)

)
.

On the other hand, to treat the interaction term, we first look at its spectral expansion. By denoting
z±,k = ⟨z±, ek⟩H0 the Fourier coefficients of z±, we have∫ T

0
ρ2(t)⟨CAeitAz+, CAe−itAz−⟩Y dt =

∑
j,k

z+,jz−,k⟨CAej , CAek⟩Y
(∫

R
eit(λj+λk)ρ2(t)dt

)
.

First of all, we use that C is a bounded operator from H2 to Y to estimate ⟨Cej , Cek⟩Y as follows

|⟨Cej , Cek⟩Y | ≤ ∥Cek∥Y ∥Cej∥Y ≤ C∥Aek∥H0∥Aej∥H0 = Cλkλj .

Since ρ2 ∈ C∞
c (R) is smooth compactly supported function, for any N ∈ N, we can find CN > 0

such that |ρ̂2(ξ)| ≤ CN ⟨ξ⟩−N and∣∣∣∣∫
R
eit(λj+λk)ρ2(t)dt

∣∣∣∣ ≤ CN

(λj + λk)N
≤ CN

(λjλk)N/2
, ∀j, k ∈ N0.

We then have∣∣∣∣∫ T

0
ρ2(t)⟨ACeitAz+, ACe−itAz−⟩Y dt

∣∣∣∣ ≤ ∑
j,k∈N0

λjλk|z+,j ||z−,k|
CN

(λjλk)N/2

≤ CN

∑
j,k∈N0

1

(λjλk)N/2−1

(
|z+,j |2 + |z−,k|2

)

≤ CN

∑
j∈N0

1

λ
N/2−1
j

∑
k∈N0

1

λ
N/2−1
k

(
|z+,k|2 + |z−,k|2

) ,

where we have chosen N large enough so that λ
1−N/2
J is summable by (4.2). By adjusting N if

necessary, we conclude the proof by observing that∑
k∈N0

1

λ
N/2−1
k

(
|z+,k|2 + |z−,k|2

)
≤ ∥(z+, z−)∥2H−2,H−2

= 2∥(z0, z1)∥2H0,H−2
.

□

Let us make the following unique continuation assumption on the pair (A, C).

Assumption UCP. For any eigenvector ψ of A such that Cψ = 0, then ψ ≡ 0.

Proposition 4.4. Let 0 < T̃ < T < ∞. Assume that the pair (A, C) satisfies Assumption UCP.

If the Schrödinger-like equation (4.3) is weakly observable by C on (0, T̃ ), then, for any non zero
(z0, z1) ∈ H2 ×H0,

CetA(z0, z1) ̸= 0 in L2([0, T ], Y ),

C1e
tA(z0, z1) ̸= 0 in L2([0, T ], Y ).

Proof. We consider first the observation by C. Let us consider

NT := {(z0, z1) ∈ H2 ×H0 | CetA(z0, z1) = 0, in L2([0, T ], Y )}.

Since the equation is linear, it is a linear subspace of H2 ×H0. Proposition 4.3 implies that for all
(z0, z1) ∈ NT ,

∥(z0, z1)∥H2×H0 ≤ C∥(z0, z1)∥H0×H−2 . (4.9)
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We will argue by contradiction to prove that NT = {0}. Let 0 < ε < T − T̃ and (z0, z1) ∈ NT .
Let us introduce the sequence

(zε0, z
ε
1) =

1

ε

(
eεA(z0, z1) − (z0, z1)

)
,

and note that it belongs to N
T̃

. Observe that (z0, z1) ∈ H2 × H0 implies that (A−1z0, A
−1z1) ∈

H4 ×H2 = D(A). By classical semigroup theory, we have

(A−1zε0, A
−1zε1) =

1

ε

(
eεA(A−1zε0, A

−1zε1) − (A−1zε0, A
−1zε1)

)
−−−→
ε→0

A(A−1z0, A
−1z1),

where the convergence holds in H2 × H0. It follows that
(
(zε0, z

ε
1)
)
ε

is a Cauchy sequence for the
norm ∥·∥H0×H−2 and so it is for the norm ∥·∥H2×H0 , due to inequality (4.9). Therefore, the limit
A(z0, z1) belongs to H2 ×H0, namely, (z0, z1) ∈ D(A) and so NT ⊂ D(A). The regularity in time
of etA allows us to take ∂t in the observation condition, obtaining

∂tCe
tA(z0, z1) = C∂te

tA(z0, z1) = CetAA(z0, z1).

This means that NT is stable under A and it only contains elements of D(Ak) × D(Ak) for any
k ∈ N.

By applying inequality (4.9) to A(z0, z1), we get ∥(z0, z1)∥H4×H2 ≤ C∥(z0, z1)∥H2×H0 . We deduce
that the unit ball of NT in the H2 ×H0 topology, is bounded in H4 ×H2 and thus it is compact
by compact embedding (recall, A has compact resolvent). By Riesz’s theorem, NT is a finite-
dimensional subspace of H2 × H0. Since −A2 is self-adjoint positive and sends NT into itself, it
admits an eigenvalue λ ≥ 0 associated to the eigenvector (vλ, wλ). We readily arrive at the system{

A2vλ = λvλ,
A2wλ = λwλ,

Since A2 is a strictly positive operator, we can write λ = α2 for α > 0 and get (A+αI)(A−αI)vλ = 0.
Using that A+αI is a strictly positive operator, we get Avλ = αvλ and Awλ = αwλ. In particular,
etA(vλ, wλ) = (cos(αt)vλ + α−1 sin(αt)wλ,−α sin(αt)vλ + cos(αt)wλ). Therefore, such eigenvector
must satisfy CetA(vλ, wλ) = 0 for t ∈ [0, T ] and therefore CAvλ = CAwλ = 0. Using Assumption
UCP and α ̸= 0, we deduce that (vλ, wλ) = (0, 0). This is a contradiction to the fact that NT ̸= {0}.

For C1, the proof is the same except that it leads to the unique continuation problem −α sin(αt)Cvλ+
α cos(αt)Cwλ = 0, t ∈ [0, T ], for which Assumption UCP still applies. □

Proposition 4.5. Let 0 < T̃ < T <∞. If the Schrödinger-like equation (4.3) is weakly observable

on (0, T̃ ) and Assumption UCP is satisfied, then, there exists Cobs > 0 such that

∥(z0, z1)∥2H2×H0
≤ C2

obs

∫ T

0
∥CetA(z0, z1)∥2Y dt (4.10)

∥(z0, z1)∥2H2×H0
≤ C2

obs

∫ T

0
∥C1e

tA(z0, z1)∥2Y dt (4.11)

for all (z0, z1) ∈ H2 ×H0.

Proof. The result follows from Proposition 4.3 and Proposition 4.4. We write it for C, but it is
exactly the same for C1.

Assume that the inequality (4.10) does not hold. Then we can find a sequence (zn0 , z
n
1 ) of norm

1 in H2 ×H0 such that ∫ T

0
∥CetA(zn0 , z

n
1 )∥2Y dt −−−→n→∞

0. (4.12)

Let (z0, z1) be the weak limit of (zn0 , z
n
1 ). The above inequality implies that (z0, z1) ∈ NT and so

(z0, z1) = (0, 0) by Proposition 4.4. We then have that (zn0 , z
n
1 ) ⇀ (0, 0) weakly in H2 × H0 and
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by compact embedding (recall A has compact resolvent) we get ∥(zn0 , z
n
1 )∥H0×H−2 → 0 as n → ∞.

Applying the weak observability estimate (4.7) along with (4.12) we get that ∥(zn0 , z
n
1 )∥H2×H0 → 0

as n→ ∞, which is a contradiction. □

Remark 4.3. Lebeau’s strategy gives a loss on time, harmless for our ends. Following Miller [Mil12],
it is possible to avoid such loss in time but it would imply to inherit the geometric setup of the
Wave equation, which is known to be more restrictive than the one of Schrödinger.

4.3. Proof of Theorem 1.6. We follow the notations of Section 4.1.1. We will first need the
following observability estimates in order to apply the abstract results.

Proposition 4.6. Let T̃ > 0 and ω be an open subset of M so that the Schrödinger equation
(4.3) is weakly observable by C = 1ω ∈ L(L2(M)) on (0, T̃ ). Then, for any 0 < T̃ < T < +∞
and any bω ∈ C∞(M) so that bω = 1 on ω, there exists C > 0 such that for any s ∈ [0, 2], any
(z0, z1) ∈ H2+s

D ×Hs
D(M) and associated solution z of

∂2t z + ∆2
gz = 0 (t, x) ∈ [0, T ] ×M,

z|∂M = ∆gz|∂M = 0 (t, x) ∈ [0, T ] × ∂M,
(z, ∂tz)(0) = (z0, z1) x ∈ M,

we have, if ∂M ̸= ∅

C∥(z0, z1)∥2H2+s
D ×Hs

D(M)
≤

∫ T

0
∥bω∆gz(t)∥2Hs

D(M)dt, (4.13)

and if ∂M = ∅

C∥(z0, z1)∥2H2+s×Hs(M) ≤
∫ T

0
∥bωz(t)∥2H2+s(M)dt. (4.14)

Proof. In the case ∂M = ∅, the operator −∆g is not strictly positive because of constants. So, we
first prove (4.13) in the case ∂M ̸= ∅ or ∂M = ∅ but (z0, z1) are orthogonal to the set of constants.
By interpolation, it is enough to consider the cases s = 0 and s = 2.

First of all, the eigenvalue’s condition (4.2) is satisfied, for instance, due to Weyl’s law. The
unique continuation of eigenfunctions for the laplacian ∆g is known to hold in our framework, see
[LRLR22, Proposition 5.2.], hence Assumption UCP is satisfied.

For s = 0, this is a consequence of the Proposition 4.5 for the case (4.10) and the fact that bω = 1
on ω. For the second one, assume that (z0, z1) ∈ H4

D ×H2
D. Take w = ∂tz and observe that it is a

mild solution of 
∂2tw + ∆2

gw = 0
w|∂M = ∆w|∂M = 0 if ∂M ≠ ∅

(w, ∂tw)(0) = (z1,∆z0),

with (z1,∆gz0) ∈ H2
D(M) × L2(M). Applying the observability inequality (4.11) to w and then

going back to the z variable, we get

∥(z1, z0)∥2H4
D×H2

D
≤ C2

∫ T

0
∥bω∆2

gz(t)∥2L2(M)dt.

Note that∫ T

0
∥bω∆2

gz(t)∥2L2(M)dt ≤
∫ T

0
∥∆g(bω∆gz)∥2L2(M)dt+

∫ T

0
∥[bω,∆g]∆gz∥2L2(M)dt,

so we now need to estimate the commutator term appearing on the right-hand side of the inequality
above. Recall [bω,∆g]∆gz = 2∇bω · ∇(∆gz) + ∆gbω∆gz. In the following estimates, the constant
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C > 0 may change from line to line,∫ T

0
∥[bω,∆g]∆gz∥2L2(M)dt ≤ C

(∫ T

0
∥∇bω · ∇(∆gz)∥2L2(M)dt+

∫ T

0
∥∆gbω∆gz∥2L2(M)dt

)
≤ C

∫ T

0
∥z(t)∥2H3

D
dt

≤ C∥(z0, z1)∥2H3
D×H1

D

≤ Cε∥(z0, z1)∥2H4
D×H2

D
+
C

ε
∥(z0, z1)∥2H2

D×L2(M)

≤ Cε∥(z0, z1)∥2H4
D×H2

D
+
C

ε

∫ T

0
∥bω∆gz(t)∥2L2(M)dt,

for ε > 0 to be chosen. Observe that we have used energy estimates, an interpolation inequality
and the observability inequality (4.13) for s = 0. By choosing ε > 0 small enough, the observability
inequality (4.13) for s = 2 follows once we put all the inequalities above together.

It only remains to prove (4.14) when there is no boundary. Decomposing (z0, z1) = π0(z0, z1) +
π⊥0 (z0, z1) where π0 is the projection on the eigenvalues 0 of ∆g, that is the constants, we have
obtained up to now, noticing the constant part of the initial data produce some part of the solution
with zero Laplacian,

∥π⊥0 (z0, z1)∥2H2+s×Hs(M) ≤ C

∫ T

0
∥bω∆gz(t)∥2Hs(M)dt.

By adding the components corresponding to eigenvalue zero and noticing that [bω,∆g] is a differential
operator of order one, we obtain

∥(z0, z1)∥2H2+s×Hs(M) ≤ C

∫ T

0
∥bωz(t)∥2H2+s(M)dt+ C∥(z0, z1)∥2H1+s×Hs−1(M).

A compactness-uniqueness argument as in Proposition 4.5 allows to conclude. □

4.3.1. Observability for the Schrödinger equation. Let M be a compact Riemannian manifold with
or without boundary equipped with a metric g and take ω ⊂ M. In what follows, we consider an
observation operator Cψ = 1ωψ, unless we specify otherwise.

In any of the situations described in Section 1.2, an observability inequality at the L2 level holds
for the linear Schrödinger equation. We summarize this discussion in the following result.

Theorem 4.7. If we are in any of the examples described in Section 1.2, then for every T > 0,
there exists C > 0 such that

∥v0∥2L2(M) ≤ C

∫ T

0
∥Ceit∆gv0∥2L2(M)dt,

for all v0 ∈ L2(M).

Note that eit∆g is the flow with Dirichlet boundary condition in case that ∂M ≠ ∅. We now
verify that the pair (A,C) satisfies Assumption 4.

Proposition 4.8. Let σ ∈ [0, 1], σ ̸= 1/4. Then, if C given by C(ϕ, ψ) = (0, bω∆gϕ) with bω
smooth satisfying ∂n⃗bω = 0 on ∂M, then Assumption 4 is fulfilled with s = 1/2 as long as ε ≤ 1/2,
σ + ε < 5/4 and σ + ε ̸= 1/4. In the case ∂M = ∅, the same result holds with C(ϕ, ψ) = (bωϕ, 0).

Proof. We compute [(A∗A)1/2,C] =
(

0 0
[bω ,∆g ]∆g 0

)
. Therefore, the result is true as long as [bω,∆g]∆g =

−2∇gbω · ∇g∆g − (∆gbω)∆g sends H4+2σ
D into H

2(σ+ε)
D , that is, as long as [bω,∆g] = −2∇gbω · ∇g −

∆gbω sends H2+2σ
D into H

2(σ+ε)
D . The assumption ε ≤ 1/2 ensures that the loss of derivative is



46

correct, whereas σ + ε < 5/4 ensures that H
2(σ+ε)
D is either H2(σ+ε)(M) or H

2(σ+ε)
0 (M) with the

Dirichlet boundary condition (provided we avoid the value 1/2). Since ∂n⃗bω = 0, this gives the
result. This is similar in the other case. □

We now come to the proof of the main result of this section.

Proof of Theorem 1.6. It only remains to check that Theorem 1.7 can be applied with the abstract
notations in Section 4.1.1, with σ = 0. The proof is very similar to the one of Theorem 1.1.

We have already established that A satisfies Assumption 1. Using Lemma A15 below, we can
construct successively bω and χ smooth, compactly supported in ω̃, with ∂n⃗χ = ∂n⃗bω = 0 on ∂M
and so that bω = 1 on ω and χ = 1 on supp(bω). Take C(ϕ, ψ) = (0, bω∆gϕ) or C(ϕ, ψ) = (bωϕ, 0)
if ∂M = ∅ so that Proposition 4.6 applies. Therefore, we get that that A satisfies Assumption 2
with C ∈ L(X) and C ∈ L(Xε) for some ε > 0. Also, Proposition 4.8 applies so that Assumption
4 is fulfilled. By writing u = χu + (1 − χ)u, we want to prove that t 7→ (1 − χ)u is analytic. Set
χ̃ = (1 − χ) and consider the new variable z = χ̃u. We then have

∂2t z + ∆2
gz = χ̃(∂2t u+ ∆2

gu) − [∆2
g, χ̃]u = −χ̃f(u) + [∆2

g, χ]u

= −χ̃f(z + χu) + [∆2
g, χ]u = −χ̃f(z + h1) + h2,

with h1 = χu and h2 = [∆2
g, χ]u. From Proposition 4.1, we see that F satisfies Assumption 3. Since

the multiplication by χ maps H2
D into itself, while [∆2

g, χ] maps H3+ε(M) into Hε
D for ε < 1/2. So,

if we choose σ = 0 and ε < 1/2, the assumptions imply that h1 and h2 are analytic with value in
H2

D and Hε
D, respectively. Now, the conclusion follows as a direct application of Theorem 1.7 in

the same way as Theorem 1.1. We conclude that t 7→ (z(t), ∂tz(t)) is analytic with value in X0. By
assumption, t 7→ χu(t) is analytic with value in H3+ε ∩ H1

0 (and so it is the same for χ∂tu) and
therefore with value in H2

D. So, t 7→ (χu(t), χ∂tu(t)) is analytic with value in X0.
By summing up, we obtain that t 7→ (u(t), ∂tu(t)) is analytic with value in X0. Using the equation

again as in Theorem 1.1, we obtain that t 7→ AU(t) is analytic with value in X0. Hence t 7→ U(t)
is analytic with value in H4 ∩H1

0 (M) ∩H2 ∩H1
0 (M), which finishes the proof. □

Appendix A.

A.1. ODEs in Banach spaces. We now introduce the two different notions of ODEs in Banach
spaces used in the present article. Let us consider the framework of Section 2 and let I ⊂ R be a
nonempty interval and take s0 ∈ I.

For any s ∈ R, we can easily extend esA to C0([0, T ], Xσ) by the formula[
esAV

]
(t) = esAV (t),

for V ∈ C0([0, T ], Xσ). If H ∈ L1
(
I, C0([0, T ], Xσ)

)
, we say that ξ ∈ C0

(
I, C0([0, T ], Xσ)

)
satisfies{

d

ds
ξ(s) = Aξ(s) +H(s), s ∈ I,

ξ(s0) = ξ0,
(A.1)

with ξ0 ∈ C0([0, T ], Xσ), if it satisfies

ξ(s) = e(s−s0)Aξ0 +

∫ s

s0

e(s−w)AH(w)dw, ∀s ∈ I, (A.2)

with equality in C0([0, T ], Xσ).

Lemma A1. If H ∈ L1
(
I, C0([0, T ],PnX

σ)
)
and ξ ∈ C0

(
I, C0([0, T ],PnX

σ)
)
for some n ∈ N and

satisfies
d

ds
ξ(s) = Aξ(s) +H(s) in the previous sense. Then, it satisfies this equation in the sense

of Cauchy-Lipschitz.
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Proof. It follows as an application of Duhamel’s formula. □

Lemma A2. For T1 < T2, let us consider T ∈ (0, T2 − T1), η ∈ (0, T2 − T − T1) and I :=
[T1 − η, T2 − T − η]. Let G ∈ C0([T1, T2], X

σ) and assume that V ∈ C0([T1, T2], X
σ) is a mild

solution of {
d

dt
V (t) = AV (t) +G(t) for t ∈ [T1, T2]

V (T1) = V0.

If we define ξ,H ∈ C0
(
I, C0([0, T ], Xσ)

)
by ξ(s) = V s and H(s) = Gs with

ξ(s)(t) = V s(t) = V (t+ s+ η) and H(s)(t) = Gs(t) = G(t+ s+ η), ∀s ∈ I, t ∈ [0, T ],

then, for any s0 ∈ I, ξ is solution in the sense of (A.2) of{
d

ds
ξ(s) = Aξ(s) +H(s), s ∈ I,

ξ(s0) = ξ0,

with ξ0 = V s0 = V (· + s0 + η).

Proof. By Duhamel’s formula, for all t ∈ [T1, T2] we have

V (t) = e(t−T1)AV0 +

∫ t

T1

e(t−τ)AG(τ)dτ.

with V (T1) = V0. Pick s0 ∈ I. Then, for s ∈ I and t ∈ [0, T ],

V s(t) = V (t+ s+ η) = e(t+s+η−T1)AV0 +

∫ t+s+η

T1

e(t+s+η−τ)AG(τ)dτ

= e(s−s0)A

(
e(t+s0+η−T1)AV0 +

∫ t+s0+η

T1

e(t+s0+η−τ)AG(τ)dτ

)
+

∫ t+s+η

t+s0+η
e(t+s+η−τ)AG(τ)dτ

= e(s−s0)AV (t+ s0 + η) +

∫ s

s0

e(s−w)AG(t+ w + η)dw

= e(s−s0)AV s0(t) +

∫ s

s0

e(s−w)AGw(t)dw.

So, since this is true for any t ∈ [0, T ], it gives

V s = e(s−s0)AV s0 +

∫ s

s0

e(s−w)AGwdw, ∀s ∈ I.

By hypothesis, this equality holds in C0([0, T ], Xσ), and is exactly (A.2), as we wanted to prove. □

A.2. Complex analysis in Banach spaces. Let E and F be Banach spaces over the same field K,
with K being either R or C. Along this appendix, we will introduce several notions of differentiability
and analyticity needed to unify the different results used throughout the present article.

We first start with a notion of differentiability in Banach spaces, often referred to as Fréchet
differentiability.

Definition A3. Let U be an open subset of E. A mapping f : U → F is said to be K-differentiable
(or just differentiable) if for each point x ∈ U there exists a mapping A ∈ L(E,F ) such that

lim
h→0

∥f(x+ h) − f(x) −Ah∥F
∥h∥E

= 0.

Such map A is called the derivative of f at x and it is denoted by Df(x).
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We can rephrase the above definition as follows: for each x ∈ U there exists a mapping A ∈
L(E,F ) such that

f(x+ h) = f(x) +Ah+ o(h)

where o(h)/∥h∥E → 0 as h → 0. With this formulation at hand, we state the Chain rule in this
setting.

Theorem A4. [Muj86, Theorem 13.6] (Chain rule) Let E, F and G be Banach spaces over K.
Let U ⊂ E and V ⊂ F be two open sets and let f : U → F and g : V → G be two differentiable
mappings with f(U) ⊂ V . Then the composite mapping g ◦ f : U → G is differentiable as well and
D(g ◦ f)(x) = Dg(f(x)) ◦Df(x) for every x ∈ U .

We now come to introduce the different notions of holomorphic or analytic maps that have been
used throughout the present article. A mapping P : E → F is said to be an k-homogeneous
polynomial if there exists a k-linear mapping A : Ek → F such that P (x) = A(x, . . . , x) for every
x ∈ E. We represent by P(kE,F ) the Banach space of all continuous k-homogeneous polynomials
from E into F under the norm

∥P∥P(kE,F ) = sup{∥P (x)∥F | x ∈ E, ∥x∥E ≤ 1}.

A series
∑∞

k=0 fk of homogeneous polynomials fk ∈ P(kE,F ) will shortly be called a formal series
from E to F . The space of all formal series with continuous terms will be denoted by S(E,F ). We
say that a formal series

∑∞
j=0 fj converges in a set U ⊂ E if for every x ∈ U the series

∑∞
j=0 fj(x)

is convergent.

Definition A5. Let U be an open subset of E and K = C (resp. R). A continuous mapping
f : U → F is said to be holomorphic (resp. analytic) if for each x ∈ U there exist a series∑∞

j=0 fj ∈ S(E,F ) such that

f(x+ h) =
∞∑
j=0

fj(h)

for all h in a neighborhood of 0 ∈ E. We shall denote by H(U,F ) the vector space of all holomorphic
mapping from U into F .

Remark A.1. The sequence (fj) which appears in the above definition is uniquely determined by f
and x. We then shall write fj = fj(x) for every j ∈ N0.

The previous definition has been taken from [BS71a] and [Muj86]. Observe that here we have
reserved the concept holomorphic for the complex case and analytic for the real case. When going
through the literature, it is often the case that holomorphicity is introduced with a different defi-
nition. We will introduce these notions and then we will establish that they are equivalent. From
now on, assume that K = C, unless we say otherwise.

Definition A6. A mapping f : U → F is said to be:

(1) weakly holomorphic if ψ ◦ f is holomorphic for every ψ ∈ F ∗, where F ∗ is the dual space of
F .

(2) G-holomorphic if for all x ∈ U and h ∈ E, the mapping ζ 7→ f(x + ζh) is holomorphic on
the open set {ζ ∈ C | x+ ζh ∈ U}.

The following theorem shows that one of the most important features of the complex analysis
still holds when working with functions between complex Banach spaces.

Theorem A7. [Muj86, Theorem 8.12, Theorem 8.7, Theorem 13.16] Let U be an open subset of
E, and let f : U → F . The following statements are equivalent:
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(1) f is C-differentiable;
(2) f is holomorphic;
(3) f is weakly holomorphic;
(4) f is continuous and G−holomorphic.

For a given x ∈ U and h ∈ E, let us denote by ρ(x, h) the supremum of all numbers ρ such that
|ζ| ≤ ρ implies x+ ζh ∈ U .

Theorem A8. [Muj86, Theorem 7.1, Corollary 7.3] (Cauchy integral formula) Let U be an open
subset of E, and let f ∈ H(U,F ). Let x ∈ U , h ∈ E and r < ρ(x, h). Then for each λ ∈ D(0, r) we
have

f(x+ λh) =
1

2πi

∫
|ζ|=r

f(x+ ζh)

ζ − λ
dζ,

where |ζ| = r denotes a circle of radius r an center at the origin in the complex plane. Moreover,
for each j ∈ N we have

fj(x)(h) =
1

2πi

∫
|ζ|=r

f(x+ ζh)

ζj+1
dζ.

Let f ∈ H(U,F ). We can expand f(x+ λh) as

f(x+ λh) =

∞∑
j=0

fj(x)(λh) =

∞∑
j=0

λjfj(x)(h),

which holds uniformly for |λ| ≤ r with 0 ≤ r < ρ(x, h). For x ∈ U we may define the nth variation
δnf(x, h) of f(x) with increment h as

δnf(x, h) =

[
dn

dζn
f(x+ ζh)

]
ζ=0

.

It can be seen that δnf(x, h) is homogeneous of degree n in h. Moreover, looking at the Taylor
development of the holomorphic map λ ∈ D(0, r) 7→ f(x+ λh) ∈ F , in view of the previous result,
it follows that

δnf(x, h) =
n!

2πi

∫
|ζ|=r

f(x+ ζh)

ζm+1
dζ. (A.3)

Remark A.2. Formula (A.3) does not depend on the r < ρ(x, h) chosen.

The above discussion leads us to the classical Cauchy estimates.

Proposition A9. [Muj86, Corollary 7.4] (Cauchy estimates) Let U be an open subset of E, and
let f ∈ H(U,F ). Let x ∈ U , h ∈ E and r < ρ(x, h). Then for each n ∈ N we have

∥δnf(x)(h)∥ ≤ r−n sup
|ζ|=r

∥f(x+ ζh)∥.

Remark A.3. Actually, it is possible to have the Cauchy estimates locally around any point x ∈ U
or even uniformly in a ball (by assuming that f is bounded there). Let us argue for the former case,
the latter being similar. By continuity, there exists rx > 0 such that ∥f(z)∥ ≤M for all z ∈ U such
that ∥z − x∥ ≤ rx, where M = M(x) > 0 is a bound that depends on x. Let h ∈ E. Thus, for z
such that ∥z − x∥ ≤ rx/2, we have z + ζh ∈ U for any |ζ| ≤ rx

2∥h∥ , since

∥z + ζh− x∥ ≤ ∥z − x∥ + ∥h∥ ≤ rx
2

+
rx

2∥h∥
∥h∥ = rx
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and so z + ζh ∈ B(x, rx) ⊂ U . Due to the Cauchy estimates

∥δnf(z)(h)∥ ≤
(

2∥h∥
rx

)n

sup
|ζ|= rx

2∥h∥

∥f(z + ζh)∥ ≤M

(
2∥h∥
rx

)m

.

The previous estimate holds uniformly on ∥z − x∥ ≤ r∗, for any r∗ < rx
2 .

We characterize holomorphic mappings whose domain is an open set in a product of Banach
spaces.

Proposition A10. [Muj86, Proposition 8.10] Let E1, . . . , En and F Banach spaces, and let U be
an open subset of E1 × . . . × En. Then a mapping f : U → F is holomorphic if and only if f is
continuous and f(ζ1, . . . , ζn) is holomorphic in each ζj when the other variables are held fixed.

We can say the following in regards to the regularity of the n-th variation of f .

Proposition A11. [BS71a, Proposition 6.4] Assume K = C (resp. R). If f : U → F is holomorphic
(resp. analytic), then for every n ∈ N the function

δnf : (x, h) ∈ U × E 7−→ δnf(x)(h) ∈ F

is holomorphic (resp. analytic).

A.2.1. Some analysis results. Here we state two useful results that are used throughout the article
in a complex-analytic context.

The following result, known as the Uniform Contraction Principle, elucidates the regularity that
can be obtained for a parameter-dependent fixed point.

Theorem A12. [CH82, Theorem 2.2] Let U , V be open sets in Banach spaces X, Y , let U be the
closure of U , T : U × V → U a uniform contraction on U and let g(y) be the unique fixed point of
T (·, y) in U . If T ∈ Ck(U × V,X), 0 ≤ k <∞, then g(·) ∈ Ck(V,X). If there is a neighborhood U1

of U such that T is analytic from U1 × V to X, then the mapping g(·) is analytic from V to X.

Observe that the definition of analyticity introduced by [CH82] combines G-analyticity and
weakly analyticity. From Theorem A7, we deduce that these notions of analyticity are equiva-
lent.

The following theorem permits to treat a real analytic function as a restriction of some holomor-
phic function.

Theorem A13. [BS71a, Theorem 7.2] Assume K = R. For any analytic function f : U → F one

may find an open subset V of EC and a holomorphic function f̃ : V → FC such that U ⊂ V and
f̃|U = f .

A.3. Geometric fact. In this section, we describe briefly the compressed cotangent bundle and
prove a geometric Lemma that has been used several times in the article. We refer to Melrose-
Sjöstrand [MS78] Hörmander [H0̈7, Section 18.3 and 24.3] for more precisions and [BL01, Section
2.2] in the more specific context of the wave equation.

Let M be a smooth compact Riemannian manifold of dimension d with boundary. Denote bTM
the bundle of rank d whose sections are the vector fields tangent to ∂M, by bT ∗M the dual bundle
(Melrose’s compressed cotangent bundle), and by j : T ∗M → bT ∗M the canonical map. This
is the restriction map, dual to the embedding bTM ↪→ TM. Its image can be identified with
T ∗(IntM) ⊔ T ∗∂M with an appropriate topology.

We set bS∗M = (bT ∗M\M0)/R∗
+ to be the cosphere bundle of bT ∗M the compressed cotangent

bundle. Here M0 ≈ M is the zero section. The map j can be defined on the quotient and allows to
define B := j(S∗M) ⊂ bS∗M. It can be identified with the image of S∗M by the continuous map
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j and is therefore a compact space when it is equipped with the natural topology of vector bundle
inherited from bS∗M.

The bicharacteristic flow is usually defined for nonelliptic operators, but the link with generalized
geodesics can, for instance, be made as follows, see Lebeau [Leb96, Section A.3]. Let P = ∂2t −∆g be
the wave operator defined on the manifolds with boundary X = Rt×M. p = |ξx|2g−ξ2t , the principal

symbol of P , is well defined on T ∗X ≈ T ∗Rt×T ∗M and p−1 is conical and therefore well defined in
T ∗X and S∗X . We denote Z = j(p−1(0)) ⊂ bT ∗X and SZ = (Z\X0)/R∗

+ ⊂ bS∗X . SZ has actually
two connected components corresponding to ξt > 0 and ξt < 0 where ξt is the variable dual to t,
that we denote Z+ and Z−. We can see that SZ+ can be identified with (Z \ X0)∩ {ξt = 1/2} and
to Rt× j(S∗M). In that context, since ξt is invariant by the flow, if we denote G the bicharacteristic
flow of Melrose-Sjöstrand, we see that it can be written

G(s)(t, x, ξ) = (t+ s, ϕs(x, ξ)),

where ϕs is a well defined flow on B = j(S∗M) ⊂ bS∗M, the generalized geodesic flow.
We denote π the natural projection from bS∗M to M. Both are continuous with the natural

topologies given. For ϕt, this is a consequence of the continuity of the bicharacteristic flow G, see
[MS78, Lemma 3.31].

Lemma A14. Suppose that (ω, T ) satisfies GCC. Then there exist χ ∈ C∞
c (ω) with non negative

values so that

• there exists an open set ω̃ ⋐ ω and a time 0 < T̃ < T such that (ω̃, T̃ ) satisfies GCC,
• χ = 1 on ω̃,
• ∂n⃗χ = 0 on ∂M where ∂n⃗ is the normal derivative to the boundary.

Proof. Let ρ = (x, ξ) ∈ B. By GCC, there exists t = t(ρ) ∈ (0, T ) such that xt := π ◦ ϕt(ρ) ∈ ω.
We first assume xt ∈ ∂M, the case xt ∈ Int(M) being simpler.
In a sufficiently small neighborhood of xt, we can find some geodesic normal coordinates (x1, x

′) ∈
[0, 2η)×BRd−1(0, 2η) satisfying the following properties. The point xt is (0, 0) in these coordinates,
∂M = {x1 = 0}, M = {x1 ≥ 0} and the metric g can be written in a diagonal type form(

1 0
0 g′(x1, x

′)

)
where g′ is a metric on Rd−1 depending smoothly on (x1, x

′). In particular, in

these coordinates, the normal vector at the boundary pointing inside is n⃗ = ∂
∂x1

.

By assumption, xt ∈ ω, so up to diminishing η, we can assume that [0, 2η) ×BRd−1(0, 2η) ⊂ ω.
Let φ ∈ C∞

c ((−2, 2), [0, 1]) so that φ = 1 on (−1, 1). In these coordinates, we define χρ(x1, x
′) =

φ(x1/η)φ(|x′|/η). We verify that χρ satisfies χρ ≥ 0, χρ = 1 in [0, η) × BRd−1(0, η) which contains
(0, 0), ∂x1χρ = 0 on {x1 = 0} and Supp(χρ) ⊂ ω. Independently on the coordinates in M, the
properties of χρ can be written

• χρ ≥ 0,
• χρ = 1 in an open set ωρ ⊂ M (open for the topology of a manifold with boundary) which

contains xt, and we can select another open set ω̃ρ ⋐ ωρ with xt ∈ ω̃ρ,
• ∂n⃗χρ = 0 on ∂M,
• χρ ∈ C∞

c (ω).

In the case xt ∈ Int(M), a cutoff function χρ can be found with the same properties.
Since xt := π ◦ ϕt(ρ) ∈ ω̃ρ with ω̃ρ open and for fixed t, π ◦ ϕt is continuous from B to M, we

can find a neighborhood Vρ ⊂ B of ρ such that

π ◦ ϕt(Vρ) ⊂ ω̃ρ. (A.4)
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The open sets Vρ form an open covering of B by such neighborhoods. The compactness of bS∗M
allows to extract a finite subcovering of them Vρ1 , . . . ,Vρk so that

B =

k⋃
i=1

Vρi . (A.5)

We define χ̃ =
∑k

i=1 χρi , ω̃ =
⋃k

i=1 ω̃ρi , F =
⋃k

i=1 ω̃ρi and W =
⋃k

i=1 ωρi . Note that we have
ω̃ ⊂ F ⊂W ⊂ ω. For χ̃, we have the following properties

• χ ≥ 0 on M,
• χ̃ ≥ 1 in the open set W ,
• ∂n⃗χ̃ = 0 on ∂M,
• χ̃ ∈ C∞

c (ω).

We state the following Claim that we will prove later.

Claim: Let F ⊂ W ⊂ M with F closed and W open. Then, there exists h ∈ C∞(M) so that
h ≥ 0 on M, h = 0 on F , h ≥ 1 on M\W and ∂n⃗h = 0 on ∂M.

We now define χ = χ̃
χ̃+h . χ̃ + h ≥ 1 on M so χ ∈ C∞(M). It satisfies ∂n⃗χ = 0 on ∂M by

composition since it is the case for χ̃ and h. Moreover, since h = 0 on F , we have χ = 1 on F .

We now check that (ω̃, T̃ ) satisfies GCC for some T̃ ∈ (max{t(ρj), j = 1, . . . , k}, T ).
Indeed, let ρ ∈ B. By the finite covering property (A.5), there exists j ∈ J1, kK so that ρ ∈ Vρj .

(A.4) implies then π ◦ ϕt(ρj)(ρ) ∈ ω̃ρj and then π ◦ ϕt(ρj)(ρ) ∈ ω̃ as expected.
The proof is now complete except for the proof of the Claim.
Let x ∈ M \W . In particular, x ∈ M \ F which is open. By following the same method as in

the first part of the proof, we can construct hx ∈ C∞
c (M\F ) so that hx ≥ 0, hx = 1 in an open set

ωx ⊂ M\F which contains x. We can also assume ∂n⃗hx = 0 on ∂M. The ωx form a covering of the

compact set M\W . So, we can select a finite covering M\W =
⋃k

i=1 ωxi and define h =
∑k

i=1 hi
which satisfies the expected properties. □

With similar arguments, we can also prove the following result.

Lemma A15. Suppose that ω and ω̃ are two open subsets of M so that ω ⋐ ω̃. Then there exists
χ ∈ C∞

c (ω̃) with non negative values so that

• χ = 1 on ω,
• ∂n⃗χ = 0 on ∂M.

Proof. Since ω ⋐ ω̃ where both sets are open, we can find ω1 open so that ω ⋐ ω1 ⋐ ω̃. We apply
the claim with F = M\ ω̃, W = M\ ω1 to get h ∈ C∞

c (ω̃) so that h ≥ 1 on ω1. If we apply again
the claim with F = ω, W = ω1 to get m ∈ C∞(M) so that m = 0 on ω and m ≥ 1 on M \ ω1.
In both cases, the functions are nonnegative and we have ∂n⃗h = ∂n⃗m = 0 on ∂M. The function
χ = h

m+h is regular and has the desired properties. □
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tors with partially Gevrey coefficients. arXiv:2401.14820, 2024.



54

[Fri58] Avner Friedman. On the regularity of the solutions of nonlinear elliptic and parabolic systems of partial
differential equations. J. Math. Mech., 7:43–59, 1958.

[FT89] Ciprian Foias and Roger Temam. Gevrey class regularity for the solutions of the Navier-Stokes equations.
J. Funct. Anal., 87(2):359–369, 1989.

[Gér88] Patrick Gérard. Solutions conormales analytiques d’équations hyperboliques non linéaires. (Conormal an-
alytic solutions of nonlinear hyperbolic equations). Commun. Partial Differ. Equations, 13(3):345–375,
1988.

[God86] Paul Godin. Propagation of analytic regularity for analytic fully nonlinear second order strictly hyperbolic
equations in two variables. Commun. Partial Differ. Equations, 11:353–366, 1986.

[Gou00] Olivier Goubet. Asymptotic smoothing effect for a weakly damped nonlinear Schrödinger equation in T2.
J. Differ. Equations, 165(1):96–122, 2000.

[Gou18] Olivier Goubet. Analyticity of the global attractor for damped forced periodic Korteweg-de Vries equation.
J. Differ. Equations, 264(4):3052–3066, 2018.
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[MS78] Richard B. Melrose and Johannes Sjöstrand. Singularities of boundary value problems. I. Comm. Pure
Appl. Math., 31(5):593–617, 1978.

[Muj86] Jorge Mujica. Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in
finite and infinite dimensions, volume 120 of North-Holland Math. Stud. Elsevier, Amsterdam, 1986.

[Per23] Thomas Perrin. Change of regularity in controllability and observability of systems of wave equations.
arXiv: 2312.06311, 2023.

[Per24] Thomas Perrin. The damped focusing cubic wave equation on a bounded domain. arXiv:2310.12644, 2024.
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[Zua91] Enrique Zuazua. Exponential decay for the semilinear wave equation with localized damping in unbounded

domains. J. Math. Pures Appl. (9), 70(4):513–529, 1991.
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