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CRISTÓBAL LOYOLA

Abstract. In this article, we investigate observability-related properties of the Korteweg-de Vries
equation with a discontinuous main coefficient, coupled by suitable interface conditions. The main
result is a novel two-parameter Carleman estimate for the linear equation with internal observation,
assuming a monotonicity condition on the main coefficient. As a primary application, we establish
the local exact controllability to the trajectories by employing a duality argument for the linear
case and a local inversion theorem for the nonlinear equation. Secondly, we establish the Lipschitz-
stability of the inverse problem of retrieving an unknown potential using the Bukhgĕım-Klibanov
method, when some further assumptions on the interface are made. We conclude with some remarks
on the boundary observability.

1. Introduction

Let T > 0, L > 0 and p : [0, L] → R+ be a piecewise constant function where p(x) = pk > 0 on
each [ak, ak+1) with Γ = {a1 < a2 < · · · < aN−1} and a0 = 0, aN = L. Given some initial data y0,
we study the following Korteweg-de Vries equation with piecewise constant main coefficient yt + p(x)yxxx + yx + yyx = 0, (t, x) ∈ (0, T ) × (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

(1.1)

coupled by the transmission conditions
y(t, a−k ) = y(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,√

pk−1yx(t, a−k ) =
√
pkyx(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,

pk−1yxx(t, a−k ) = pkyxx(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K.
(TC)

Despite the discontinuity of the coefficient p, the transmission conditions allow us to consider this
model as a whole in (0, T ) × (0, L), since they act as boundary conditions on each (ak, ak+1),
k ∈ J0, N − 1K.

The Korteweg-de Vries equation (KdV) is a well-known dispersive equation, introduced by
Korteweg-de Vries [KDV95] to model the propagation of water waves in a shallow channel, namely,
water waves with small amplitude and large wavelength compared to the undisturbed depth profile.
In this context, this kind of water waves in a channel with a sudden jump in the depth profile have
been modeled by a KdV equation with a discontinuous main coefficient [PV92]. Thus, in this model
the function p = p(x) can be interpreted as the undisturbed depth profile with jumps of the channel,
whereas p(x) + y(t, x) represents the wave surface at time t at position x. On the mathematical
side, to solve the KdV equation on the half-line, Deconinck, Sheils and Smith [DSS16] has proposed
(several) interface conditions involving the first three derivatives (in space) of the solution at the
interface. The specific interface conditions of system (1.1)-(TC) were proposed by Crépeau [Cré16],
where the exact boundary controllability of such a model is studied. In this work, we continue the
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study of this equation by obtaining a new Carleman estimate under a monotonicity hypothesis on
the main coefficient, allowing us to deduce some results on the controllability and the recovery of
some parameter for this equation.

1.1. Main results. Let us define Ik := (ak, ak+1), k ∈ J0, N − 1K. In what follows ω will be always
a non-empty open subset of (0, L). Due to the discontinuity of the main coefficient, it is natural to
impose some restriction on where the observation zone should be located. In this direction we will
introduce the following assumption on the pair (ω, p):

Hypothesis M. there exists j ∈ {0, . . . , N −1} such that the observation zone ω is such that ω ⊂ Ij ,
henceforth denoted as ω ⋐ Ij , and the following monotonicity property holds depending on the
value of j:

(1) if j ̸∈ {0, N − 1} then{
p(a−k ) > p(a+k ), k ∈ J1, jK,
p(a−k ) < p(a+k ), k ∈ Jj + 1, N − 1K;

(2) if j = 0 then

p(a−k ) < p(a+k ), k ∈ J1, N − 1K;

(3) if j = N − 1 then

p(a−k ) > p(a+k ), k ∈ J1, N − 1K.

Let s ≥ 0 and let us introduce the space

Hs
Γ(0, L) := {u ∈ L2(0, L) | u|Ik ∈ Hs(Ik), k ∈ J0, N − 1K}. (1.2)

Via isomorphism, Hs
Γ(0, L) can be seen as the direct sum of the Sobolev spaces Hs(Ik) for k ∈

J0, N − 1K. Thus, it has a Hilbert space structure equipped the inner product

⟨u, v⟩Hs
Γ(0,L)

=
N−1∑
k=1

⟨u|Ik , v|Ik ⟩Hs(Ik).

1.1.1. Carleman estimate. Let Q := (0, T ) × (0, L). For some ρ0, ρ1 > 0 given, let us assume that

ρ0 ≤ min
x∈[0,L]

p(x) and max
x∈[0,L]

p(x) ≤ ρ1.

Let b, d ∈ L∞(Q) and let L : V → L2(Q) be the differential operator given by

L = ∂t + p(x)∂3x + b(t, x)∂x + d(t, x) (1.3)

where V is the space of functions u ∈ L2(0, T ;H3
Γ(0, L) ∩ H1

0 (0, L)) such that Lu ∈ L2(Q) and u
satisfies the transmission conditions

u(t, a−k ) = u(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,√
pk−1ux(t, a−k ) =

√
pkux(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,

pk−1uxx(t, a−k ) = pkuxx(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K.
(1.4)

For ω0 be a non-empty open subset of ω such that ω0 ⋐ ω. Fix κ ∈ (1, 2) and let β be the weight
function constructed by Lemma 3.1 below. For λ > 0, we introduce the Carleman weights

η(t, x) =
eκλ∥β∥∞ − eλβ(x)

t(T − t)
and ξ(t, x) =

eλβ(x)

t(T − t)
, (1.5)

for (t, x) ∈ Q. The main result is the following two-parameter Carleman estimate.
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Theorem 1.1. Let (ω, p) satisfy Hypothesis M and let ω0 ⋐ ω be non-empty and open. There exist
s0 > 0, λ0 > 0 and a constant C > 0 depending on ω, Γ, L, T , p, ∥β∥C3([0,L]\Γ), s0 and λ0 such
that for all u ∈ V we have

C

∫∫
Q
e−2sη(s5λ6ξ5|u|2 + s3λ4ξ3|ux|2 + sλ2ξ|uxx|2)dxdt

≤ ∥e−sηLu∥2L2(Q) +

∫∫
(0,T )×ω

e−2sη(s5λ6ξ5|u|2dxdt+ s3λ4ξ3|ux|2dxdt+ sλ2ξ|uxx|2)dxdt (1.6)

for any s ≥ s0 and λ ≥ λ0.

The above estimate is derived by following Fursikov and Imanuvilov [FI96]. We emphasize that
a Carleman estimate is of interest in itself due to the many applications they have found. We now
give two applications and in Section 6 we briefly discuss the case of boundary observability.

1.1.2. Local controllability to the trajectories. Let us consider the controlled KdV equation yt + p(x)yxxx + yx + yyx = 1ωv, (t, x) ∈ (0, T ) × (0, L),
y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),
(1.7)

coupled by the transmission conditions (TC), where y0 is the initial condition, and v is a control
localized in some non-empty open set ω ⊂ (0, L). We are interested in the exact controllability to the
trajectories for the KdV equation (1.7). More precisely, we wonder if, given T > 0 and a solution y
of the uncontrolled KdV equation yt + p(x)yxxx + yx + yyx = 0, (t, x) ∈ (0, T ) × (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

(1.8)

coupled by the corresponding transmission conditions (TC), there exists a control v = v(t) such
that the corresponding solution y = y(t, x) satisfies y(T, ·) = y(T, ·) on (0, L). In Section 2 we
discuss the well-posedness of systems (1.7) and (1.8), both coupled by (TC). The controllability
result is the following.

Theorem 1.2. Let T > 0 and let (ω, p) satisfy Hypothesis M. If y ∈ C([0, T ], L2(0, L)) ∩
L2(0, T ;H1(0, L)) is the solution of (1.8), then there exists δ > 0 such that for any y0 ∈ L2(0, L)
satisfying ∥y0 − y0∥L2(0,L) ≤ δ, we can find a control v ∈ L2((0, T )×ω) such that the corresponding
solution y to (1.7) satisfies

y(T, ·) = y(T, ·) in (0, L).

The strategy consists in first consider the system satisfied by z = y − y, which is given by zt + p(x)zxxx + (yz)x + zzx = 1ωv, (t, x) ∈ (0, T ) × (0, L),
z(t, 0) = z(t) = zx(t, L) = 0, t ∈ (0, T ),

z(0, x) = z0(x), x ∈ (0, L),
(1.9)

coupled by the corresponding transmission conditions (TC). Then, establishing the exact control
to the trajectories reduces to establish the null controllability of the system (1.9). This is done
by studying the null controllability of the linearization of (1.9) and then employing a fixed point
argument to treat the nonlinear system. The null controllability of the linearized system follows by
a duality argument and a suitable observability estimate for the adjoint system. This observability
estimate is derived from the Carleman estimate given in Theorem 1.1.
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1.1.3. Retrieving a potential term. We consider the following nonlinear KdV equation yt + p(x)yxxx + µyx + yyx = 0, (t, x) ∈ (0, T ) × (0, L),
y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L),
(1.10)

coupled by the transmission conditions (TC), with potential µ = µ(x) and initial data y0. We
denote its solution by y = y[µ]. We make the following assumptions on the interface Γ.

Hypothesis I. The interface Γ and the coefficient p satisfy:

• The middle point of the domain is not an interface point: ak ̸= L/2 for each k ∈ J0, N − 1K.
• The interface is symmetric, in the sense that ak + aN−k = L for all k ∈ J0, NK.

For m > 0 given, let us introduce the set of admissible potentials

Psym
≤m (0, L) = {µ ∈ L∞(0, L) | µ(x) = µ(L− x),∀x ∈ [0, L] and ∥µ∥L∞ ≤ m}.

Before presenting the result, we refer to Section 2 below for the definition of the space H3
Γ(0, L).

Following the Bukhgĕım-Klibanov method, we can employ a slight variant of the Carleman estimate
given in Theorem 1.1 to establish the Lipschitz continuity of the inverse problem consisting on
retrieving the potential term on the equation (1.10). The result is the following.

Theorem 1.3. Let ω ⊂ (0, L) be a nonempty open set containing L/2. Assume that Γ satisfy
Hypothesis I. Let p be symmetric with respect to L/2, that is, p(x) = p(L−x) for all x ∈ [0, L] and{

p(a−k ) > p(a+k ), k ∈ J1, ⌊N/2⌋K,
p(a−k ) < p(a+k ), k ∈ J⌊N/2⌋, NK.

Let ω ⊂ (0, L) be a nonempty open set containing L/2. Assume that Γ satisfy Hypothesis I.
Let m, r0 and K be some given positive constants. Let y0 ∈ H6

Γ(0, L) ∩H3
Γ(0, L) satisfying

y′0(x) = y′0(L− x) and |y′0(x)| ≥ r0 > 0, ∀x ∈ [0, L].

There exists a positive constant C depending on L, T , Γ, ω, m, r0 and K such that for all µ,
ν ∈ Psym

≤m (0, L), it holds

∥µ− ν∥L2(0,L) ≤ C∥y − z∥H1(0,T ;H2
Γ(ω))

,

where the corresponding solutions y = y[µ] and z = z[ν] of (1.10)-(TC) issued from y0 satisfy

max{∥y∥W 1,∞(0,T ;W 1,∞(0,L)), ∥z∥W 1,∞(0,T ;W 1,∞(0,L))} ≤ K.

Remark 1.4. Along the proof, we apply the Carleman estimate for (ω0, p) satisfying Hypothesis
M, where ω0 ⋐ ω is symmetric with respect to L/2. The symmetry and monotonicity hypothesis
imposed on p is then compatible with Hypothesis I.

1.2. Some comments on the literature. The Korteweg-de Vries equation is one of the most
celebrated nonlinear dispersive equations. The study of its controllability properties began with the
early works of Russel and Zhang [RZ93, RZ96]. Since then, extensive research has been conducted
on its controllability properties. A good survey of results up to 2014 is provided by Cerpa [Cer14].
Here, we briefly highlight some key issues.

Regarding our setting, where we aim to study the control properties of the equation, the un-
controlled system (1.1)-(TC), which notably has a piecewise constant dispersion coefficient, was
first proposed by Crépeau [Cré16]. In that article, the boundary exact controllability with a single
control acting on the Neumann boundary condition is established by a multiplier technique, under
certain (smallness) conditions involving the coefficient p, the time T > 0 and the length L > 0. To
the best of the author’s knowledge, this is the only controllability result for such an equation. The
exact boundary controllability of the KdV equation is a delicate issue, as was already noticed by
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Rosier [Ros97] when he established (by a perturbative approach) that the exact controllability with
right Neumann control holds if the length L does not belong to a certain set of critical lengths.
Later, using more refined nonlinear methods, Coron and Crépeau [CC04] showed the (local) exact
controllability of the nonlinear system holds even when the length is critical. Since then, extensive
research has been conducted on various control problems surrounding this issue; a good survey of
this phenomenon is given by Capistrano-Filho [CF24]. As pointed out by Crépeau, obtaining exact
control properties in the discontinuous setting, even by a perturbative approach, appears to be a
challenging problem.

A less demanding property is the control to the trajectories. This was studied by Glass and
Guerrero [GG08] in the case of boundary controls. Observe that when y = 0, the control to the
trajectories is known as null controllability. Thus, the control to the trajectories can be seen as a
result in between the null controllability and exact controllability of the system. Moreover, it has
been used as a stepping stone to obtain exact control properties by introducing additional controls
acting on the system. For instance, Chapouly [Cha09] employed this approach, leveraging control
properties of the viscous Burgers equation.

Furthermore, the control properties of linear KdV equation in different settings have already been
addressed by some authors. On one hand, the uniform controllability in the vanishing dispersion
limit has been addressed by Glass and Guerrero [GG08, GG09] under different boundary conditions.
On the other hand, the controllability properties of the KdV equation in networks with various
configurations has caught significant attention in recent years; see, for example, Capistrano-Filho,
Parada and da Silva [FPdS25] and the references therein.

With regard to global Carleman estimates for the KdV equation, when a variable main coefficient
is considered Baudouin, Cerpa, Crépeau and Mercado [BCCM14] derived a Carleman estimate for a
sufficiently regular main coefficient, leading to Lipschitz stability in the inverse problem of retrieving
the main coefficient of the equation. Here, we extend this result in a certain sense by allowing
discontinuities in the main coefficient.

Aiming to obtain controllability results and Lipschitz stability for certain inverse problems, global
Carleman estimates for PDEs with discontinuous principal coefficients have been derived in various
contexts. Most of these, however, impose either a monotonicity condition on the jump of the
principal coefficient, strong geometric assumptions at the interface, or both. Given the extensive
literature, we mention the early works addressing the heat equation by Doubova, Osses, and Puel
[DOP02], the wave equation by Baudouin, Mercado, and Osses [BMO07], and the Schrödinger
equation by Baudouin and Mercado [BM08]. We also note that the monotonicity condition on the
principal coefficient has been relaxed in some one-dimensional cases: see Benabdallah, Dermenjian,
and Le Rousseau [BDLR07] for the heat equation, and Imba [Imb25] for the wave equation.

We emphasize that local Carleman estimates are a key tool in establishing unique continuation,
observability, and controllability results. Moreover, their derivation typically requires less restrictive
geometric conditions, in sharp contrast to the global case. For example, without any monotonicity
assumptions or geometric conditions on the interface, local Carleman estimates (and related appli-
cations) were studied by Léautaud, Le Rousseau, and Robbiano [LRLR13] in the multi-dimensional
parabolic case, and by Filippas [Fil24] for the multi-dimensional wave equation.

1.3. Outline of the paper. The rest of the article is organized as follows. In Section 2 we establish
the well-posedness of the uncontrolled KdV equation (1.7)-(TC) along with some regularity results
for the linear KdV as well as for its adjoint. In Section 3 we derive a new two parameter Carleman
estimate. In Section 4 we prove the control to the trajectories of the KdV equation. In Section 5
we prove the Lipschitz stability of the inverse problem of retrieving a potential term. In Section 6
we give final remarks about boundary observability.
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1.3.1. Notation. To make our computations clearer, the symbol [·]a will denote the jump at a ∈ Γ,
namely, for a function µ we write [µ]a := µ(a+) − µ(a−). Given two quantities X and Y , we will
employ the notation X ≲ Y to say that X ≤ CY for some C > 0, possibly depending on several
parameters involved in the computations. Often, we will use such notation when the constant does
not matter on the analysis or when its dependency is understood.

Acknowledgments. Part of this article began while I was completing my master’s degree. I would
like to warmly thank Nicolás Carreño and Alberto Mercado for introducing into the world of research
in control theory and for all their support during that period.
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2. Well-posedness results

Let us first recall the definition (1.2) of H3
Γ(0, L) for s = 3. By Gagliardo-Nirenberg’s inequality,

if u|Ik
∈ H3(Ik), it also belongs to C2(Ik) and the operator

u|Ik
∈ H3(Ik) 7−→ u|Ik

∈ C2(Ik) (2.1)

is continuous. In particular, any u ∈ H3
Γ(0, L) belongs to C2(Ik) for each k ∈ J1, N − 1K. For

u ∈ H3
Γ(0, L), we introduce the transmission conditions

u(a−k ) = u(a+k ), k ∈ J1, N − 1K,√
pk−1u

′(a−k ) =
√
pku

′(a+k ), k ∈ J1, N − 1K,
pk−1u

′′(a−k ) = pku
′′(a+k ), k ∈ J1, N − 1K.

(2.2)

The natural space for the study of the system (1.1)-(TC) is defined as

H3
Γ(0, L) = {u ∈ H3

Γ(0, L) | u(0) = u(L) = u′(L) = 0 and u satisfies (2.2)},

which is a closed subspace of H3
Γ and therefore a Hilbert space endowed with the inherited inner

product of H3
Γ.

Additionally, let us introduce the Banach space

X 0
T (0, L) = C([0, T ], L2(0, L)) ∩ L2(0, T ;H1(0, L)),

equipped with the norm

∥·∥X 0
T (0,L) = ∥·∥L2(0,T ;L2(0,L)) + ∥·∥L2(0,T ;H1(0,L)).

Similarly, we introduce the space

X 3
Γ,T (0, L) = C([0, T ],H3

Γ(0, L)) ∩ L2(0, T ;H3
Γ ∩H4

Γ(0, L)),

equipped with the natural norm.

2.1. Linear Cauchy problem. Let us consider the inhomogeneous Korteweg-de Vries equation
with source term f yt + p(x)yxxx = f, (t, x) ∈ (0, T ) × (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

(2.3)

coupled along with the transmission conditions (TC).
Let A : dom(A) ⊂ L2(0, L) → L2(0, L) be the formally defined linear operator given by A =

−p(x)∂3x with domain dom(A) := H3
Γ(0, L). We also introduce its formal adjoint operator of A,
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defined by A∗ : z 7→ p(x)zxxx with domain dom(A∗) given by those functions z ∈ H3
Γ(0, L) satisfying

z(0) = z(L) = zx(0) = 0 and the transmission conditions (2.2).

Lemma 2.1. The operators A and A∗ are well-defined.

Proof. Let z ∈ H3
Γ(0, L). If φ ∈ C∞

c (0, L), as z ∈ H3(Ik) for all k ∈ J0, N − 1K, by performing
integration by parts on each Ik and adding up all these integrals, we get

N−1∑
k=0

∫ ak+1

ak

p∂3xzφdx =

N∑
k=1

(∫ ak

ak−1

pk−1zxxzxdx− pk−1zxxz
∣∣ak
ak−1

)

= −
∫ L

0
(p∂2xz)(∂xφ)dx+

N−1∑
k=1

φ(ak)[pkzxx]ak .

First, note that [pkzxx]ak = 0 for k ∈ J1, N − 1K due to the transmission conditions and therefore
the trace terms above all vanish. As p∂2xz ∈ L2(0, L), we have that ⟨p∂3xz, φ⟩L2(0,L) is well-defined

and equals −
∫ L
0 (p∂2xz)(∂xφ)dx. As φ is arbitrary, p∂3xz is well-defined as a function in L2(0, L) and

the conclusion follows. □

We can now employ semigroup theory tools to study the linear Cauchy problem (2.3)-(TC).

Proposition 2.2. The operators A and A∗ both generate a strongly continuous semigroup of con-
tractions on L2(0, L).

Proof. The operators A and A∗ are both closed. If z ∈ D(A) then

⟨Az, z⟩L2(0,L) = −
∫ L

0
p(x)zxxxzdx

=

N∑
k=1

(∫ ak

ak−1

pk−1zxxzxdx− pk−1zxxz
∣∣ak
ak−1

)

=
N∑
k=1

(pk−1

2

(
|zx(a−k )|2 − |zx(a−k−1)|

2
)
− pk−1zxx(a−k )z(a−k ) + pk−1zxx(a+k−1)z(a+k−1)

)

= −p0
2
|zx(0)|2 +

N−1∑
k=1

(
−1

2
[p|zx|2]ak + z(ak)[pkzxx]ak

)
= −p0

2
|zx(0)|2 ≤ 0.

In a similar way, A∗ is also dissipative since

⟨z,A∗z⟩L2(0,L) = −pN−1

2
|zx(L)|2 ≤ 0.

The conclusion follows from the classical Lumer-Phillips Theorem. □

Using semigroup theory and the multipliers method, we obtain the following well-posedness result
for the linear Cauchy problem (2.3)-(TC) along with the classical Kato smoothing effect.

Proposition 2.3. Let T > 0. If y0 ∈ L2(0, L) and f ∈ L1(0, T ;L2(0, L)), then there exists a
unique mild solution y of the KdV equation (2.3)-(TC) that belongs to X 0

T (0, L). Also, there exists
C = C(T, L,Γ, p) > 0 such that

∥y∥X 0
T (0,L) ≤ C

(
∥y0∥L2(0,T ) + ∥f∥L1(0,T ;L2(0,L))

)
.
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Proof. Using Proposition 2.2, there exists a unique mild solution y of (2.3) which belongs to
C([0, T ], L2(0, L)), see [Paz83, Chapter 4]. Moreover, there exists C > 0 such that

∥y∥2C([0,T ],L2(0,L)) ≤ C(∥y0∥2L2(0,L) + ∥f∥2L1(0,T ;L2(0,L))).

In what follows we consider y0 ∈ H3
Γ(0, L) which, by a standard density argument, is enough to

employ the multiplier method. Let q ∈ C([0, T ] × [0, L]) be such that qk ∈ C∞([0, T ] × Ik) where
qk denotes the restriction of q to Ik for k ∈ J0, N − 1K. Performing several integration by parts we
obtain

2

∫ s

0

∫
Ik

qyytdxdt = −
∫ s

0

∫
Ik

qt|y|2dxdt+

∫
Ik

q|y|2
∣∣∣∣s
0

dx

and

2

∫ s

0

∫
Ik

qpyyxxxdxdt = −
∫ s

0

∫
Ik

pqxxx|y|2dxdt+ 3

∫ s

0

∫
Ik

pqx|yx|2dxdt

+

∫ s

0
(pqxxx|y|2 − pq|yx|2 − 2pqxyyx + 2pqyyxx)

∣∣∣∣ak+1

ak

dt,

for each k ∈ J0, N − 1K. By adding these equations we get

3

∫ s

0

∫ L

0
pqx|yx|2dxdt+

∫ L

0
q|y|2

∣∣∣∣s
0

dx =

∫ s

0

∫ L

0
(qt + pqxxx)|y|2dxdt

+ 2

∫ s

0

∫ L

0
qyfdxdt−

∫ s

0
p0|yx(t, 0)|2dt+

N−1∑
k=1

∫ s

0
([q + pqxx]ak |y(t, a)|2 − [q]akpk|yx(t, a+k )|2)dt

+ 2
N−1∑
k=1

∫ s

0
([q]aky(t, ak)pkyxx(a+k ) − [

√
pqx]aky(ak)

√
pkyx(t, a+k ))dt.

By setting s = T and choosing q0(x) = x/
√
p0 for x ∈ I0 and qk(x) = (x− ak)/

√
pk + qk−1(a

−
k ) for

x ∈ Ik for all k ∈ J1, N − 1K, we readily get the identity

3

∫ T

0

∫ L

0

√
p|yx|2dxdt+

∫ L

0
q|y(T, x)|2dx =

∫ L

0
q|y0(x)|2dx+ 2

∫ T

0

∫ L

0
qyfdxdt.

The above identity together with the previous estimates implies

∥yx∥2L2(L2) ≤ C(T, L,Γ, p)
(
∥y0∥2L2 + ∥f∥2L1(L2)

)
.

This concludes the proof. □

Remark 2.4. The multiplier employed in the previous proof was introduced by Crépeau [Cré16],
capturing the transmission conditions and being similar in spirit to the one used by Rosier [Ros97].

Remark 2.5. At the L2-level of regularity, the transmission conditions (TC) does not make sense.
They are understood as an extension of the related semigroup and the solution is understood in the
sense of Duhamel’s formula.

2.2. Nonlinear system. Let z ∈ X 0
T (0, L) be given and consider the system yt + p(x)yxxx + yx = −zzx, (t, x) ∈ (0, T ) × (0, L),

y(t, 0) = y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x) x ∈ (0, L),

(2.4)

coupled by the transmission conditions (TC). Let Ã := −p(x)∂3x−∂x with D(Ã) = D(A). Straight-
forward computations reveal that the conclusions of Proposition 2.3 still hold true when A is replaced
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by Ã. Thus, due to the Kato-smoothing effect and Proposition A2, −zzx is allowed as a source
term and we can introduce F : X 0

T (0, L) → X 0
T (0, L) to be the map defined by F(z) = y, where y

is the solution of (2.4). It is well-defined and characterized by Duhamel’s formula

y(t) = etÃy0 +

∫ t

0
e(t−s)Ã(−zzx)(s)ds, ∀t ∈ [0, T ], (2.5)

where
(
etÃ
)
t∈[0,T ]

is the strongly continuous semigroup of contractions generated by Ã.

We now establish global well-posedness using a classical fixed-point argument. Assuming more
regularity on the initial data, we can guarantee the existence of a more regular solution as classically
done for the KdV equation by Bona-Sun-Zhang [BSZ03, Theorem 4.1].

Proposition 2.6. Let T > 0 and L > 0. For any initial condition y0 ∈ L2(0, L) the system
(1.1)-(TC) has a unique solution y ∈ X 0

T (0, L) which satisfies

∥y∥X 0
T (0,L) ≤ C∥y0∥L2(0,L), (2.6)

for some C = C(T, L, p, ∥y0∥L2(0,L)) > 0. If, additionally, y0 ∈ H3
Γ(0, L) then y ∈ X 3

Γ,T (0, L) and

∥y∥X 3
Γ,T (0,L) ≤ C∥y0∥H3

Γ(0,L)
, (2.7)

Proof. Observe that the constant C > 0 given by Proposition 2.3 is affine on T > 0. Then, any
0 < τ ≤ T , we have

∥F(z)∥X 0
τ (0,L)

≤ C
(
∥y0∥L2(0,L) + ∥zzx∥L1(0,τ ;L2(0,L))

)
.

By using Lemma A1 on (0, L), the previous estimate implies

∥F(z)∥X 0
τ (0,L)

≤ C∥y0∥L2 + C1(τ
1/2 + τ1/3)∥z∥X 0

τ (0,L)
∥z∥X 0

τ (0,L)
.

for some C1 > 0. Let R > 0 be such that

R = 2C∥y0∥L2(0,L) and C1(τ
1/2 + τ1/3)R ≤ 1

4
.

With this choice, for small τ , we readily see that F maps the closed ball BR = {z ∈ X 0
τ : ∥z∥X 0

τ (0,L)
≤

R} into itself and

∥F(z1) −F(z2)∥X 0
τ (0,L)

≤ C1(τ
1/2 + τ1/3)(∥z1∥X 0

τ (0,L)
+ ∥z2∥X 0

τ (0,L)
)∥z1 − z2∥X 0

τ (0,L)

≤ 1

2
∥z1 − z2∥X 0

τ (0,L)
.

The smallness condition imposed previously by R allows us to apply the Banach fixed-point
theorem in time τ ≤ T , which give us a unique fixed point y of F belonging to BR and by consequence
being the unique solution y ∈ X 0

τ (0, L) of (1.8). We observe that τ ∈ (0, T ] is independent on
∥y0∥L2(0,L). Thus, up to shrinking τ if necessary so that nτ = T for some n ∈ N, we can extend the
previous argument on intervals (τ, 2τ ], (2τ, 3τ ], . . . , ((n− 1)τ, nτ = T ]. Therefore, the existence of a
solution y ∈ X 0

T (0, L) is guaranteed.
If y0 ∈ H3

Γ(0, L), we can set z := yt and look at the equation it satisfies. We can replicate
the previous reasoning to get that ∥z∥X 0

T (0,L) ≤ C1∥y0∥H3
Γ(0,L)

, where C1 only depends on T and

∥y0∥L2(0,L). Thus, by carefully using the fact that z = −p(x)yxxx−yx−yyx (recall that p is piecewise
constant), we obtain estimate (2.7). The details are easily fulfilled following [BSZ03]. □
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2.3. Adjoint system. We now introduce the notion of weak solutions that will be used for our
controllability problem in Section 3. The following definition is motivated by performing integration
by parts as the ones done in Proposition 2.2.

Definition 2.7. For (f, y0) ∈ L2(0, T ;H−1(0, L)) × L2(0, L) a function y ∈ C([0, T ], L2(0, L)) is
called a weak solution of (2.3)-(TC) if it satisfies∫∫

Q
ygdxdt+ (y(T ), φT )L2(0,L) =

∫ T

0
⟨f, φ⟩H−1(0,L)×H1

0 (0,L)
dt+ (y0, φ(0))L2(0,L),

for all (g, φT ) ∈ L1(0, T ;L2(0, L)) × L2(0, L), where φ is the mild solution of the adjoint system −φt − p(x)φxxx = g, (t, x) ∈ (0, T ) × (0, L),
φ(t, 0) = φ(t, L) = φx(t, 0) = 0, t ∈ (0, T ),

φ(T, x) = φT (x), x ∈ (0, L),
(2.8)

coupled by the corresponding transmission conditions (TC).

Remark 2.8. Similarly as we did in Proposition 2.3, we can state that for any φT ∈ L2(0, L), there
is a unique mild solution φ of (2.8) which belongs to X 0

T (0, L). In particular, it also enjoys the
Kato-type smoothing effect and henceforth the above definition makes sense.

Remark 2.9. A simple computation using integration by parts shows that a (piecewise) regular
solution y of (2.3)-(TC) is also a solution in the above sense.

We now establish some regularity estimates for the adjoint system (2.8) that will be needed later
in Section 4. We recall the definition of Hs(0, L) given in (1.2) and we remark that in the next
result we make the notational convention H−1

Γ (0, L) := H−1(0, L), where H−1 is the usual dual
space of H1

0 equipped with the dual norm

∥ψ∥H−1 = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0
ψhdx

∣∣∣∣
as a consequence of Riesz’s representation theorem.

Proposition 2.10. Let T > 0. If φT ∈ D(A∗) and g ∈ L1(0, T ;D(A∗)), then there exists a unique
strong solution φ of the adjoint equation (2.8) such that, for some C = C(T, L,Γ, p) > 0,

∥φ∥C([0,T ],H3
Γ(0,L))∩L2(0,T ;H4

Γ(0,L))
≤ C

(
∥φT ∥H3

Γ(0,L)
+ ∥g∥L1(0,T ;H3

Γ(0,L))

)
. (2.9)

Additionally, if g ∈ L2(0, T ;D(A∗)), then for s ∈ {0, 1, 2, 3}, we have

∥φ∥L2(0,T ;Hs+1
Γ (0,L)) ≤ C

(
∥φT ∥Hs

Γ(0,T ) + ∥g∥L2(0,T ;Hs−1
Γ (0,L))

)
. (2.10)

Proof. The existence follows by classical semigroup theory as done in Proposition 2.3, see [Paz83,
Chapter 4]. We thus focus on obtaining estimates (2.10).

Step 1: case s = 0. This case is handled exactly as in Proposition 2.3 by employing Proposi-
tion 2.2. Moreover, arguing as in the proof of Proposition 2.3, but instead by choosing the multiplier
qN−1(x) = (x− L)/

√
pN−1 for x ∈ IN−1 and qk(x) = (x− ak+1)/

√
pk+1 + qk+1(a

+
k+1) for x ∈ Ik for

all k ∈ J0, N − 2K, we obtain

3

∫ T

0

∫ L

0

√
p|φx|2dxdt+

∫ L

0
|qφ(0, x)|2dx =

∫ L

0
|qφT (x)|2dx+ 2

∫ T

0

∫ L

0
|q|φgdxdt.

Thus, since p is bounded by below, by using Poincaré’s inequality, for any ε > 0 we have

∥φx∥2L2(L2) ≤ C∥φT ∥2L2 + ε∥φx∥2L2(L2) + Cε∥g∥2L2(H−1).
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By choosing ε > 0 small enough, we readily get inequality (2.10) for s = 0.

Step 2: case s = 3. Let φT ∈ D(A∗) and g ∈ L1(0, T ;D(A∗)). By classical semigroup theory, then
φ ∈ C([0, T ],D(A∗)). Hence, if we let w = A∗φ, it is a mild solution of (2.8) with initial data A∗φT

and source term A∗g ∈ L1(0, T ;L2(0, L)). Furthermore, we can perform the same analysis as in the
case s = 0, which lead us to

∥w∥L2(0,T ;H1(0,L)) ≤ C
(
∥A∗φT ∥2L2(0,L) + ∥A∗g∥2L2(H−1)

)
. (2.11)

To estimate the last term in the right-hand side above, we use

∥A∗g∥H−1 = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0
pgxxxhdx

∣∣∣∣ = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0
pgxxhxdx

∣∣∣∣ .
Indeed, as we did in Lemma 2.1, we have A∗g ∈ L2(0, L) and thus ⟨A∗g, h⟩L2(0,L) = −⟨pgxx, hx⟩L2(0,L)

due to the transmission conditions. By Cauchy-Schwarz’s inequality, we get

∥A∗g∥H−1 = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0
pgxxhxdx

∣∣∣∣ ≤ ∥pgxx∥L2 ≤ C∥g∥H2
Γ
. (2.12)

As p is bounded by below, by using the transmission conditions again, we have that

∥φ∥L2(0,T ;H4
Γ(0,L))

≲ ∥w∥L2(0,T ;H1(0,L)) + ∥φ∥L2(0,T ;H1(0,L)) (2.13)

and gathering inequalities (2.11)-(2.12)-(2.13), we have

∥φ∥L2(0,T ;H4
Γ(0,L))

≲ ∥φT ∥H3
Γ

+ ∥g∥L2(0,T ;H2
Γ(0,L))

,

proving estimate (2.10) for s = 3.

Step 3: cases s = 1, 2. Observe that with a similar reasoning we can obtain estimates for s = 1 and
s = 2. Indeed, let us introduce

v(t) := etA
∗
(
√
p∂2xφT ) +

∫ t

0
e(t−s)A∗

(
√
p∂2xg)(s)ds, t ∈ [0, T ].

Note that v is a mild solution on X 0
T (0, L) of (2.8) with initial condition

√
p∂2xφT ∈ L2(0, L) and

source term
√
p∂2xg ∈ L1(0, T ;L2(0, L)). Thus

∥v∥L2(0,T ;H1(0,L)) ≲ ∥√p∂2xφT ∥L2(0,L) + ∥√p∂2xg∥L2(H−1). (2.14)

As in the previous case, integrating by parts and using that the transmission conditions, we have

∥√p∂2xg∥L2(H−1) = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0

√
pgxxhdx

∣∣∣∣ = sup
h∈H1

0 (0,L)
∥h∥

H1
0
≤1

∣∣∣∣∫ L

0

√
pgxhxdx

∣∣∣∣ ≤ ∥√pgx∥L2 . (2.15)

Since p is piecewise constant, we see that v =
√
pφ on (0, T ) × (ak, ak+1) for k ∈ J0, N − 1K. With

this observation and using that p is bounded by above and below, putting together inequalities
(2.14) and (2.15), we arrive to

∥φ∥L2(0,T ;H3
Γ(0,L))

≲ ∥φT ∥H2
Γ(0,L)

+ ∥g∥L2(0,T ;H1(0,L)).

Lastly, note that

u(t) := etA
∗
(∂xφT ) +

∫ t

0
e(t−s)A∗

(∂xg)(s)ds, t ∈ [0, T ],
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is a mild solution of (2.3) in X 0
T (0, L) with initial data ∂xφT ∈ L2(0, L) and source term ∂xg ∈

L1(0, T ;L2(0, L)). With the aid of Duhamel’s formula we get ∂xφ = u in X 0
T (0, L) and the estimate

for s = 1 follows as in the previous cases. □

Remark 2.11. Estimates like (2.10) are usually obtained by means of interpolation theory. However,
we avoid such kind of arguments since the description of the interpolation space [L2(0, L),D(A∗)]θ
is a delicate issue. Up to the author’s knowledge, it is not a result available in the literature and it
is outside of the scope of the present article.

We now establish a similar result for the adjont system to the linearized version of (1.7) with a
regular source term. These estimates are key for the proof of Proposition 4.1.

Proposition 2.12. Let T > 0 be given and assume y ∈ X 0
T (0, L). Then for any φT ∈ L2(0, L) and

g ∈ L1(0, T ;L2(0, L)), there exists a unique solution φ ∈ X 0
T (0, L) of −φt − p(x)φxxx − φx − yφx = g, (t, x) ∈ (0, T ) × (0, L),

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, t ∈ (0, T ),
φ(T, x) = φT (x), x ∈ (0, L).

Additionally, if y ∈ X 3
Γ,T (0, L), φT ∈ D(A∗) and g ∈ L2(0, T ;D(A∗)), then for s ∈ {0, 1, 2, 3}, we

have

∥φ∥L2(0,T ;Hs+1
Γ (0,L)) ≤ C

(
∥φT ∥Hs

Γ(0,T ) + ∥g∥L2(0,T ;Hs−1
Γ (0,L))

)
(2.16)

Proof. By linearity, we split φ = φ1+φ2 where φ1 solves the system with initial data φT and source
term g, and φ2 solves the system with potential y. To treat φ1 we use Proposition 2.10 and to treat
φ2, we use a fixed point argument following the same steps of the proof of Proposition 2.6. The
estimates follow from Proposition 2.10. We omit the details. □

Remark 2.13. Note that the statement of Proposition 2.12 is not empty, as shown by Proposition 2.6.

3. A global Carleman estimate

We first introduce a weight function with internal observation. Let j ∈ {0, . . . , N − 1} be fixed
in the sequel and let ω0 ⋐ Ij .

Lemma 3.1. There exists a continuous function β ∈ C([0, L]) such that β|Ik ∈ C3(Ik) for k ∈
J0, N − 1K, satisfying the following properties

(1) for some r > 0, it holds that

min
x∈[0,L]

β ≥ r and βx ̸= 0 in Ij \ ω0

and depending on the value of j:
(a) if j ̸∈ {0, N − 1} then{

βx ≥ r > 0 in Ik for k ∈ J0, j − 1K,
βx ≤ −r < 0 in Ik for k ∈ Jj + 1, N − 1K;

(b) if j = 0 then

βx ≤ −r < 0 in Ik for k ∈ J0, N − 1K;

(c) if j = N − 1 then

βx ≥ r > 0 in Ik for k ∈ J0, N − 1K;

(2) for some κ ∈ (1, 2) it holds that

κmax
x∈Ik

β < 2 min
x∈Ik

β, k ∈ J0, N − 1K; (3.1)
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(3) at the interface the following transmission conditions holds:
β(a−k ) = β(a+k ), k ∈ J1, N − 1K,√

pk−1βx(a−k ) =
√
pkβx(a+k ), k ∈ J1, N − 1K,

pk−1βxx(a−k ) = pkβxx(a+k ), k ∈ J1, N − 1K.
(3.2)

Proof. We will show the existence of such a weight-function β by explicitly constructing a piecewise
linear function, excepting the observation interval Ij , satisfying all the afore given properties. Al-
though this is enough to obtain our Carleman estimate, we point out that a more general β could
be constructed, see for instance [BDLR07, Lemma 1.1, Lemma 2.1].

In what follows, we will denote the restriction of β to Ik by β|Ik
:= βk for k ∈ J0, N − 1K.

Step 1. Piecewise affine on the left. For k ∈ J0, j − 1K we define βk(x) = mk(x− ak) + ck, where mk

and ck are to be chosen. The third equation of (3.2) is trivially satisfied. By the second condition,
we see that

√
pkmk =

√
pk+1mk+1, k ∈ J0, j − 1K.

By taking m0 > 0, we inductively obtain {m1, . . . ,mj}, with each mk depending on m0 and pi for
0 ≤ i ≤ k. Furthermore, we ensure that β′ is positive and bounded by below on each one of these
intervals.
Step 2. Quartic polynomial on the observation zone. To start the construction, let us impose β′′j (x) =

mj(x − aj)(x − aj+1), for some mj ∈ R to be determined. With this choice, we ensure that the
third equation of (3.2) is satisfied on both sides of Ij . We thus have

β′j(x) = mj

∫ x

aj

(t− aj)(t− aj+1)dt+ nj , (3.3)

where nj :=
√
pj−1mj−1√

pj
, prescribed by the transmission condition on the left. For the condition

on the right, we see that our choice of mj will determine β′j(a
−
j+1) and thus we choose it so that

β′j(a
−
j+1) < 0. To ensure the latter condition, a simple computation leads us to impose impose

6nj
(aj+1 − aj)3

< mj . (3.4)

Let us suppose that the observation set is given by ω0 = (aj + δ0, aj+1 − δ1) for δ0, δ1 > 0. Let
us denote by Ij = Ij(x) the integral term on (3.3), defined for x ∈ [aj , aj+1]. Observe that Ij is
negative and strictly decreasing. To ensure that the conditions β′j(aj +δ0) > 0 and β′j(aj+1−δ1) < 0

hold, along with (3.4), we impose that mj satisfies

max

{
6nj

(aj+1 − aj)3
,

6nj
|Ij(aj+1 − δ1)|

}
< mj <

6nj
|Ij(aj + δ0)|

,

which is consistent since |Ij | is strictly increasing. With these choices, by the intermediate value

theorem we ensure that any zero of β′j must lie inside of ω0 and thus β′j ̸= 0 in Ij \ ω0.

Step 3. Piecewise affine on the right. As in the first step, for k ∈ Jj + 1, N − 1K we define βk(x) =
mk(x − ak) + ck, where mk and ck are to be chosen. Once imposed the condition

√
pjβ

′
j(a

−
j+1) =√

pj+1mj+1, the coefficient mj+1 is determined by our previous choices of m0 and mj , along with
the parameters p0, . . . , pj+1 and a1, . . . , aj+1. We then define the remaining mk’s inductively by
using the second equation in (3.2).
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Step 4. Final bounds. We start by asking c0 > 0 to be large enough so that β0 > 0 and by monotony
this implies that βk > 0 for each k ∈ J1, j − 1K. Furthermore, by choosing c0 >

κ
2 (aj+1 − aj) we

verify (3.1) on I0. By imposing the continuity condition, inductively, we obtain

ck =

k∑
i=1

mi(ai − ai−1) + c0, k ∈ J1, j − 1K. (3.5)

Once again, inductively, we see that by taking c0 large enough satisfying

c0 >
κ

(2 − κ)
mk−1(ak − ak−1) −

k−1∑
i=0

mi(ai − ai−1), k ∈ J2, j − 1K,

we verify property (3.1) for k ∈ J0, j − 1K. On Ij we have

βj(x) :=

∫ x

aj

β′j(s)ds+ cj , x ∈ Ij .

The continuity on the left-end point of the interval extends the validity of (3.5) for k = j as well
and on the right-end point we get cj+1 = βj(a

−
j+1). If x∗, x∗ ∈ Ij denote the points where βj attains

its maximum and minimum, respectively, since cj depends in an affine way with respect to c0, we
further impose that c0 is such that

κ

∫ x∗

0
β′j(s)ds−

∫ x∗

0
β′j(s)ds < (2 − κ)cj ,

and this inequality implies that (3.1) is verified for k = j. In the remaining pieces, we proceed
as before: once imposing the continuity condition at aj+1, we see that cj+1, and hence ck for
k ∈ Jj + 1, N − 1K, depends in an affine way with respect to c0, so we can verify (3.1) for k ∈
Jj + 1, N − 1K by choosing c0 large enough.

By piecing together all the βk’s we obtain the desired weight function β. □

Remark 3.2. Since we are deriving a two-parameter Carleman estimate, a condition on the second
derivative of the weight function is not required, unlike in the one-parameter case. However, we
retain the second-order transmission condition, as it simplifies some computations later on.

Let us set Q′ = (0, T ) × ((0, L) \ Γ). The weight functions (1.5) satisfy the following identities

∂xη = −λβ′ξ, ∂xξ = λβ′ξ, in Q′,

∂tη =
2t− T

t(T − t)
η, ∂tξ =

2t− T

t(T − t)
ξ, in Q.

We have that for each k ∈ N, there exists C > 0 independent of λ > 0 such that

|∂kxη(t, x)| + |∂kxξ(t, x)| ≤ C(λk + λk−1 + . . .+ λ+ 1)ξ(t, x), (t, x) ∈ Q′. (3.6)

Furthermore, due to the properties of β, there exists a constant C = C(T ) > 0 such that

C−1 ≤ ξ(t, x) and |∂tη(t, x)| + |∂tξ(t, x)| ≤ Cξ2(t, x), (t, x) ∈ Q. (3.7)

These estimates will give us the heuristics to identify the dominating and lower order terms coming
from the integration by parts later on.
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3.1. Proof of Theorem 1.1. Let s > 0 and define Vs = {e−sηu : u ∈ V}. For u ∈ V set w = e−sηu
and introduce the conjugate operator

Lηw = e−sηL(esηw) = (L1 + L2 + R)w

where

L1w = wt + 3ps2η2xwx + pwxxx + 3pms2ηxηxxw,

L2w = ps3η3xw + 3psηxwxx + 3swx(pηx)x,

and

Rw = bsηxw + bwx + psηxxxw + 3ps2ηxηxxw + dw + sηtw − 3spxηxwx − 3pms2ηxηxxw,

for some constant m > 0, to be chosen later. By Lemma 3.1, since β satisfies the transmission
conditions, the conjugate function satisfies them as well:

w(t, a−k ) = w(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,√
pk−1wx(t, a−k ) =

√
pkwx(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K,

pk−1wxx(t, a−k ) = pkwxx(t, a+k ), t ∈ (0, T ), k ∈ J1, N − 1K.

Taking the L2−norm to Lη we obtain

∥L1w∥2L2(Q) + ∥L2w∥2L2(Q) + 2⟨L1w,L2w⟩L2(Q) = ∥Lηw −Rw∥2L2(Q)

and then

∥L1w∥2L2(Q) + ∥L2w∥2L2(Q) + 2⟨L1w,L2w⟩L2(Q) ≤ 2∥Lηw∥2L2(Q) + 2∥Rw∥2L2(Q).

3.1.1. Double product term. To fix notation, in what follows the symbol |L0 denotes the evaluation

at the end points considering the interface, namely, µ|L0 :=
∑N−1

k=0 µ|
ak+1
ak . Henceforth, we will write

µ
∣∣L
0

= µ(L) − µ(0) −
∑
a∈Γ

[µ]a.

Denote by Iij for i ∈ J1, 4K, j ∈ J1, 3K the ij−term of the L2−product ⟨L1w,L2w⟩L2(Q). We have
that w(0, t) = w(L, t) = 0 for all t ∈ (0, T ) and w(x, 0) = w(x, T ) = 0 for all x ∈ (0, L). In
what follows, for each term Iij we will perform several integration by parts and we will write once
explicitly all the terms. Then we will gather these terms into two different groups: the distributed
and boundary-interface terms. Within these groups we will split the terms with respect to the
powers of s, λ and ξ into dominating and lower-order terms: the former will give produce the
weighted norms we are looking for and the latter will be absorbed for large s and λ.

We perform the integration by parts below:

I11 =

∫∫
Q
ps3η3xwwtdxdt =

3

2
s3λ3

∫∫
Q
pβ3xξ

2ξt|w|2dxdt,

I12 = 3s

∫∫
Q
pηxwxxwtdxdt

= −I13 −
3

2
sλ

∫∫
Q
pβxξt|wx|2dxdt− 3sλ

∫ T

0
pβxξwtwxdt

∣∣∣∣L
0

,

I21 = 3s5
∫∫

Q
p2η5xwwxdxdt

=
3

2
s5λ5

∫∫
Q

(p5β5x)xξ
5|w|2dxdt+

15

2
s5λ6

∫∫
Q
p2β6xξ

5|w|2dxdt− 3

2
s5λ5

∫ T

0
p2β5xξ

5|w|2dt
∣∣∣∣L
0

,
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I22 = 9s3
∫∫

Q
p2η3xwxwxxdxdt

=
9

2
s3λ3

∫∫
Q

(p2β3x)xξ
3|wx|2dxdt+

27

2
s3λ4

∫∫
Q
p2β4xξ

3|wx|2dxdt−
9

2
s3λ3

∫ T

0
p2β3xξ

3|wx|2dt
∣∣∣∣L
0

,

I23 = 9

∫∫
Q
ps3η2x(pηx)x|wx|2dxdt

= −9s3λ3
∫∫

Q
pβ2x(pβx)xξ

3|wx|2dxdt− 9s3λ4
∫∫

Q
p2β4xξ

3|wx|2dxdt,

I31 = s3
∫∫

Q
p2η3xwwxxxdxdt

=
s3λ3

2

∫∫
Q

(p2β3xξ
3)xxx|w|2dxdt−

3

2
s3λ3

∫∫
Q

(p2β3x)xξ
3|wx|2dxdt−

9

2
s3λ4

∫∫
Q
p2β4xξ

3|wx|2dxdt

− s3λ3

2

∫ T

0
(p2β3xξ

3)xx|w|2dt
∣∣∣∣L
0

+ s3λ3
∫ T

0
(p2β3xξ

3)xwwxdt

∣∣∣∣L
0

+
s3λ3

2

∫ T

0
p2β3xξ

3|wx|2dt
∣∣∣∣L
0

− s3λ3
∫ T

0
p2β3xξ

3wwxxdt

∣∣∣∣L
0

,

I32 = 3s

∫∫
Q
p2ηxwxxwxxxdxdt

=
3

2
sλ

∫∫
Q

(p2βx)xξ|wxx|2dxdt+
3

2
sλ2

∫∫
Q
p2β2xξ|wxx|2dxdt−

3

2
sλ

∫ T

0
p2βxξ|wxx|2dt

∣∣∣∣L
0

,

I33 = 3s

∫∫
Q
p(pηx)xwxwxxxdxdt

= − 3

2
sλ

∫∫
Q

(p(pβxξ)x)xx|wx|2 + 3sλ

∫∫
Q
p(pβx)xξ|wxx|2dxdt+ 3sλ2

∫∫
Q
p2β2xξ|wxx|2dxdt

+
3

2
sλ

∫ T

0
(p(pβxξ)x)x|wx|2dt

∣∣∣∣L
0

− 3sλ

∫ T

0
p(pβxξ)xwxwxxdt

∣∣∣∣L
0

,

I41 = 3ms5
∫∫

Q
p2η4xηxx|w|2dxdt

= −3ms5λ5
∫∫

Q
p2β4xβxxξ

5|w|2dxdt− 3ms5λ6
∫∫

Q
p2β6xξ

6|w|2dxdt,

I42 = 9ms3
∫∫

Q
p2η2xηxxwwxxdxdt
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= − 9

2
ms3λ3

∫∫
Q

(p2β2xβxxξ
3)xx|w|2dxdt−

9

2
ms3λ4

∫∫
Q

(p2β4xξ
3)xx|w|2dxdt

+ 9ms3λ3
∫∫

Q
p2β2xβxxξ

3|wx|2dxdt+ 9ms3λ4
∫∫

Q
p2β4xξ

3|wx|2dxdt

+
9

2
ms3λ3

∫ T

0
(p2β2xβxxξ

3)x|w|2dt
∣∣∣∣L
0

+
9

2
ms3λ4

∫ T

0
(p2β3xξ

3)x|w|2dt
∣∣∣∣L
0

− 9ms3λ3
∫ T

0
p2β2xβxxξ

3wwxdt

∣∣∣∣L
0

− 9ms3λ4
∫ T

0
p2β4xξ

3wwxdt

∣∣∣∣L
0

,

I43 = 9ms3
∫∫

Q
p(pηx)xηxηxxwwxdxdt

=
9

2
ms3λ3

∫∫
Q

[p(pβxξ)xβxβxxξ
2]x|w|2dxdt+

9

2
ms3λ4

∫∫
Q

[p(pβxξ)xβ
3
xξ

2]x|w|2dxdt+

− 9

2
ms3λ3

∫ T

0
p(pβxξ)xβxβxxξ

2|w|2dt
∣∣∣∣L
0

− 9

2
ms3λ4

∫ T

0
p(pβxξ)xβ

3
xξ

2|w|2dt
∣∣∣∣L
0

.

3.1.2. Gathering terms. We split the double product terms as follows

⟨L1w,L2w⟩L2(Q) =

(
15

2
− 3m

)
s5λ6

∫∫
Q
p2β6xξ

5|w|2dxdt

+ 9ms3λ4
∫∫

Q
p2β4xξ

3|wx|2dxdt+
9

2
sλ2

∫∫
Q
p2β2xξ|wxx|2dxdt+ Dlow + B

where Dlow and B gather the lower order distributed and boundary-interface terms, respectively.
To be precise, using inequalities (3.6) and (3.7) we have the following estimate

|Dlow| ≲ (s5λ5 + s3λ6)

∫∫
Q
ξ5|w|2dxdt

+ (s3λ3 + sλ4)

∫∫
Q
ξ3|wx|2dxdt+ sλ

∫∫
Q
ξ|wxx|2dxdt. (3.8)

For the boundary-interface terms, without taking into account any of the boundary conditions nor
the transmission conditions, we have

B = − 3

2
s5λ5

∫ T

0
p2β5xξ

5|w|2dt
∣∣∣∣L
0

+
9

2
ms3λ4

∫ T

0
(p2β3xξ

3)x|w|2dt
∣∣∣∣L
0

− 9

2
ms3λ4

∫ T

0
p(pβxξ)xβ

3
xξ

3|w|2dt
∣∣∣∣L
0

− s3λ3

2

∫ T

0
(p2β3xξ

3)xx|w|2dt
∣∣∣∣L
0

+
9

2
ms3λ3

∫ T

0
(p2β2xβxxξ

3)x|w|2dt
∣∣∣∣L
0

− 9

2
ms3λ3

∫ T

0
p(pβxξ)xβxβxxξ

2|w|2dt
∣∣∣∣L
0

− 4s3λ3
∫ T

0
p2β3xξ

3|wx|2dt
∣∣∣∣L
0

+
3

2
sλ

∫ T

0
[p(pβxξ)x]x|wx|2dt

∣∣∣∣L
0

− 3

2
sλ

∫ T

0
p2βxξ|wxx|2dt

∣∣∣∣L
0

− 3sλ

∫ T

0
p(pβxξ)xwxwxxdt

∣∣∣∣L
0

− s3λ3
∫ T

0
p2β3xξ

3wwxxdt

∣∣∣∣L
0

+ s3λ3
∫ T

0
(p2β3xξ

3)xwwxdt

∣∣∣∣L
0



18 CARLEMAN ESTIMATES FOR THE KDV WITH PIECEWISE CONSTANT MAIN COEFFICIENT

− 9ms3λ3
∫ T

0
p2β2xβxxξ

3wwxdt

∣∣∣∣L
0

− 9ms3λ4
∫ T

0
p2β4xξ

3wwxdt

∣∣∣∣L
0

− 3sλ

∫ T

0
pβxξwtwxdt

∣∣∣∣L
0

.

In view of the boundary and the transmission conditions, we split B as follows

B = BL + B0 + B∗ + BΓ,

where each one of these terms is described below. First of all, BL and B0 correspond to those terms
at x = L and 0, respectively, that have fixed sign

BL = −4s3λ3
∫ T

0
p(L)2β3x(L)ξ3(t, L)|wx(t, L)|2dt− 3

2
sλ

∫ T

0
p(L)2βx(L)ξ(t, L)|wxx(t, L)|2dt,

B0 = 4s3λ3
∫ T

0
p(0)2β3x(0)ξ3(t, 0)|wx(t, 0)|2dt+

3

2
sλ

∫ T

0
p(0)2βx(0)ξ(t, 0)|wxx(t, 0)|2dt,

and B∗ corresponds to the terms without fixed sign at the boundary

B∗ =
3

2
sλ

∫ T

0
(p(pβxξ)x)x

∣∣
x=L

|wx(t, L)|2dt− 3

2
sλ

∫ T

0
(p(pβxξ)x)x

∣∣
x=0

|wx(t, 0)|2dt

+ 3sλ

∫ T

0
(p(pβxξ)x)

∣∣
x=0

wx(t, 0)wxx(t, 0)dt− 3sλ

∫ T

0
(p(pβxξ)x)

∣∣
x=L

wx(t, L)wxx(t, L)dt.

In the same spirit as before, we split the terms at the interface as follows

BΓ = Bdom
Γ + Blow

Γ =
∑
a∈Γ

(
Bdom

Γ (a) + Blow
Γ (a)

)
.

Here

Bdom
Γ (a) =

3

2
s5λ5

∫ T

0
[β5xp

2]aξ
5(t, a)|w(t, a)|2dt+ 4s3λ3

∫ T

0
[p2β3x|wx|2]aξ3(t, a)dt

+ s3λ3
∫ T

0
[p2β3xξ

3wwxx]adt+
3

2
sλ

∫ T

0
[p2βx|wxx|2]aξ(t, a)dt

+ 3sλ

∫ T

0
[pβxξwtwx]adt

and Blow
Γ gathers the remaining terms at the interface, which will be shown to be of lower order

with respect to Bdom
Γ .

3.1.3. Estimates for the distributed terms. First we fixm ∈ (0, 5/2). Henceforth the generic constant
depends on L, T , ρ0, ρ1, ∥β∥C3 , r, s0 and λ0, where s0 and λ0 will be chosen later. The dominating
terms are bounded by below as follows(

15

2
− 3m

)
s5λ6

∫∫
Q
p2β6xξ

5|w|2dxdt+9ms3λ4
∫∫

Q
p2β4xξ

3|wx|2dxdt+
9

2
sλ2

∫∫
Q
p2β2xξ|wxx|2dxdt

≳
∫ T

0

∫
(0,L)\ω0

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt.

Let us introduce the following weighted norm

∥w∥2s,λ,ξ := s5λ6
∫∫

Q
ξ5|w|2dxdt+ s3λ4

∫∫
Q
ξ3|wx|2dxdt+ sλ2

∫∫
Q
ξ|wxx|2dxdt.
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Thus, estimate (3.8) reads as

|Dlow| ≲
(

1

s2
+

1

λ

)
∥w∥2s,λ,ξ.

and in consequence, by choosing s0 and λ0 large enough, we get

∥w∥2s,λ,ξ + B ≲ ⟨L1w,L2w⟩L2(Q)

+

∫∫
(0,T )×ω0

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt, (3.9)

for all s ≥ s0 and λ ≥ λ0. Additionally, for the definition of R, we observes that the highest powers
are s4λ6 for the zero order term and s2λ2 for the first order term. From the regularity assumptions
of p, b and d we obtain we observe that for the residue term one has the estimate

∥Rw∥2L2(Q) ≲ s4λ6
∫∫

Q
ξ4|w|2dxdt+ s2λ2

∫∫
Q
ξ2|wx|2dxdt ≲

(
1

s
+

1

sλ2

)
∥w∥2s,λ,ξ.

3.1.4. Estimates for the boundary terms. From the properties of β given by Lemma 3.1, we have
both B0 > 0 and BL > 0, since βx(0) and −βx(L) are both positively bounded by below. To treat
the terms contained in B∗, as before, using inequality (3.6), we have the following estimates∣∣∣∣32sλ

∫ T

0
(p(pβxξ)x)x

∣∣
x=L

|wx(t, L)|2dt
∣∣∣∣ ≲ sλ3

∫ T

0
p2(L)β3x(L)ξ3(t, L)|wx(t, L)|2dt.

For the term with mixed derivative, using inequality (3.6) and Young’s inequality we get∣∣∣∣3sλ ∫ T

0
(p2(βxξ)x)

∣∣
x=L

wx(t, L)wxx(t, L)dt

∣∣∣∣ ≲ s2λ3
∫ T

0
p2(L)β3x(L)ξ3(t, L)|wx(t, L)|2dt

+ λ

∫ T

0
p2(L)βx(L)ξ(t, L)|wxx(t, L)|2dt.

The analogous bounds hold for the terms evaluated at x = 0. We readily get for s ≥ s0,

|B∗| ≲ 1

s
B0 +

1

s
BL.

Then taking s0 large enough, from (3.9), for any s ≥ s0 and λ ≥ λ0 it holds

∥w∥2s,λ,ξ + B0 + BL + BΓ ≲ ⟨L1w,L2w⟩L2(Q)

+

∫∫
(0,T )×ω0

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt. (3.10)

3.1.5. Treatment of the terms at the interface. We introduce the following notation for the weighted
norm at the interface

|w|2Γ,s,λ,ξ =
∑
a∈Γ

∫ T

0

(
s5λ5ξ5(t, a)|w(t, a)|2 + s3λ3ξ3(t, a)|wx(t, a−)|2 + sλξ(t, a)|wxx(t, a−)|2

)
dt.

First of all, notice that since both β and w satisfy the transmission conditions, we have∫ T

0
[pβxξwtwx]adt = 0, ∀a ∈ Γ.

Now, the transmission conditions, allow us to rewrite the remaining terms of Bdom
Γ as follows

3

2
s5λ5

∫ T

0
ξ5(t, a)[p2β5x]a|w(t, a)|2dt =

3

2
s5λ5

∫ T

0
p2+β

4
x(a+)[βx]aξ

5(t, a)|w(t, a)|2dt,
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4s3λ3
∫ T

0
ξ3(t, a)[p2β3x|wx|2]adt = 4s3λ3

∫ T

0
p+β

2
x(a+)[βx]aξ

3(t, a)p−|wx(t, a−)|2dt,

3

2
sλ

∫ T

0
ξ(t, a)[p2βx|wxx|2]adt =

3

2
sλ

∫ T

0
[βx]aξ(t, a)p2−|wxx(t, a−)|2dt,

s3λ3
∫ T

0
[p2β3xwxx]aξ

3(t, a)w(t, a)dt = s3λ3
∫ T

0
p+β

2
x(a+)[βx]aξ

3(t, a)p−wxx(a−)w(t, a)dt.

Let us define the vector function

w⃗(t, a) = (s2λ2ξ2(t, a)w(t, a), sλξ(t, a)
√
p−wx(t, a−), p−wxx(t, a−))tr,

for (t, a) ∈ (0, T ) × Γ. By the above computations we can write

Bdom
Γ (a) =

3

2
sλ

∫ T

0
ξ(t, a)

(
Aw⃗(t, a), w⃗(t, a)

)
R3dt,

where A is defined by

A(a) :=

 [p2β5x]a 0 1
3 [pβ3x]a

0 8
3 [pβ3x]a 0

1
3 [pβ3x]a 0 [βx]

 . (3.11)

No matter where ω0 is located, since β satisfies the transmission conditions and Hypothesis M is
enforced, we have [βx]a > 0 for any a ∈ Γ. From this observation, given that A(a) is a symmetric
matrix, by using Sylvester’s criterion, it is not difficult to arrive that A(a) is a positive definite
matrix. We thus choose γ > 0 to be the minimum over the lower bounds of the associated quadratic
form to A(a). We thus obtain, uniformly in a ∈ Γ, that

sλ

∫ T

0
ξ(t, a)

(
Aw⃗(t, a), w⃗(t, a)

)
R3dt ≥ γsλ

∫ T

0
ξ(t, a)|w⃗(t, a)|2R3dt.

As we did with the boundary terms, by using inequality (3.6) and Young’s inequality, we get

|Blow
Γ (a)| ≲

(
1

sλ2
+

1

s2λ
+

1

s2

)
s5λ5

∫ T

0
ξ5(t, a)|w(t, a)|2dt

+
1

s2λ
s3λ3

∫ T

0
ξ3(t, a)|wx(t, a−)|2dt+

1

λ
sλ

∫ T

0
ξ(t, a)|wxx(t, a−)|2dt

Since the above estimates are uniform with respect to a ∈ Γ, by choosing s0 and λ0 large enough
yields that, for any s ≥ s0 and λ ≥ λ0,

|w|2Γ,s,λ,ξ ≲ BΓ.

3.1.6. Back to the original variable. Gathering the inequalities obtained in the previous steps, we
proved the following estimate for the conjugated operator.

Proposition 3.3. Let (ω, p) satisfy Hypothesis M and let ω0 ⋐ ω. There exist s0 > 0, λ0 > 0 and
a constant C > 0 depending on L, T , p, s0, λ0 and ∥β∥C3([0,L]\Γ), such that for all w ∈ Vs we have

C
(
∥L1w∥2L2(Q) + ∥L2w∥2L2(Q) + ∥w∥2s,λ,ξ + |w|2Γ,s,λ,ξ

)
≤ ∥Lηw∥2L2(Q) +

∫∫
(0,T )×ω

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt,

for any s ≥ s0 and λ ≥ λ0.
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Now we go back to the original variable. Recall that u = esηw belongs to V and Lηw = e−sηLu.
Straightforward computations lead us to

e−2sη|ux|2 ≲ |wx|2 + s2λ2ξ2|w|2,
e−2sη|uxx|2 ≲ |wxx|2 + s2λ2ξ2|wx|2 + s4λ4ξ2|w|2,

for all (t, x) ∈ Q′, from which we get∫∫
Q
e−2sη(s5λ6ξ5|u|2 + s3λ4ξ3|ux|2 + sλ2ξ|uxx|2)dxdt

≲
∫∫

Q
(s5λ6ξ5|w|2 + s3λ4ξ3|wx|2 + sλ2ξ|wxx|2)dxdt.

Similarly,

e2sη|wx|2 ≲ |ux|2 + s2λ2ξ2|u|2,
e2sη|wxx|2 ≲ |uxx|2 + s2λ2ξ2|ux|2 + s4λ4ξ2|u|2,

for all (t, x) ∈ Q′. Thus∫∫
(0,T )×ω

(s5λ6ξ5|w|2 + s3λ4ξ3|wx|2 + sλ2ξ|wxx|2)dxdt

≲
∫∫

(0,T )×ω
e−2sη(s5λ6ξ5|u|2 + s3λ4ξ3|ux|2 + sλ2ξ|uxx|2)dxdt.

From the above estimates, Proposition 3.3 directly implies Theorem 1.1.

4. Control to the trajectories

The aim of this section is to prove the controllability result Theorem 1.2. To this end we will
consider the following two relevant systems. The first one corresponds to the linearized system to
(1.7) around the aimed trajectory y, which is zt + p(x)zxxx + zx + (yz)x = h+ 1ωv, (t, x) ∈ (0, T ) × (0, L),

z(t, 0) = z(t, L) = zx(t, L) = 0, t ∈ (0, T ),
z(0, x) = z0(x), x ∈ (0, L),

(4.1)

coupled by (TC), where v ∈ L2(0, T ;L2(0, L)) is the control and h is a source in some appropriate
weighted space. The second relevant system corresponds to the adjoint system associated to (4.1) −φt − p(x)φxxx − φx − yφx = g, (t, x) ∈ (0, T ) × (0, L),

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, t ∈ (0, T ),
φ(T, x) = φT (x), x ∈ (0, L).

(4.2)

coupled by (TC), with appropriate initial data φT and source term g. The strategy follows a classical
duality argument which is briefly described below:

(1) We establish a suitable Carleman estimate for the adjoint system (4.2).
(2) By means of the Carleman estimate, we obtain an observability inequality for (4.2). We then

employ a variational approach to establish the null controllability of the linearized system
(4.1) with a right-hand side decaying near t = T .

(3) We then apply a local inversion result in a suitable functional setting - inherited from the
variational approach - to obtain the null controllability of the nonlinear system (1.7).
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In this section, we closely follow Cerpa, Montoya and Zhang [CMZ20] and show their arguments can
be adapted to the piecewise constant case. The main point being the regularity estimates provided
by Proposition 2.12, which combined with the Carleman estimate of Theorem 1.1 will allow us to
obtain a suitable one-parameter Carleman estimate and henceforth carry out the strategy.

4.1. A suitable observability inequality. Let y ∈ X 3
Γ,T (0, L), whose existence is guaranteed by

Proposition 2.6. Let us introduce the operator L : V → L2(Q) given by

Lz = zt + p(x)zxxx + zx + (yz)x, (4.3)

defined on the space of functions

V = {z ∈ L2(0, T ;H3
Γ(0, L)) | Lz ∈ L2(Q), z(0) = z(L) = z′(L) = 0 and z satisfies (TC)}.

In what follows, let ω0 ⋐ ω be non-empty and open, κ ∈ (1, 2) and β be constructed by Lemma 3.1.
From now on, let us fix λ ≥ λ0 large enough so the Carleman estimate of Theorem 1.1 holds true
with the weights η and ξ introduced in (1.5). Let us denote

η̂(t) = max
x∈[0,L]

η(t, x), η̆(t) = min
x∈[0,L]

η(t, x), ζ(t) =
1

t2(T − t)2
, (4.4)

We have the following one-parameter Carleman estimate.

Proposition 4.1. Let (ω, p) satisfy Hypothesis M. Let y ∈ X 3
Γ,T (0, L) be a solution of (1.8). There

exist s0 > 0 and C > 0 depending on ω, Γ, L, T , p, s0, λ0 and ∥β∥C3
Γ([0,L]\Γ)

such that for any

φT ∈ D(A∗) and g ∈ L2(0, T ;D(A∗)), the corresponding solution φ to (4.2) satisfies∫∫
Q
e−4sη̂(s5ζ5|φ|2 + s3ζ3|φx|2 + sζ|φxx|2)dxdt

≤ C

(∫∫
Q
e−2sη̂|g|2dxdt+ s7

∫∫
(0,T )×ω

e−6sη̆+2sη̂ζ7|φ|2dxdt

)
, (4.5)

for any s ≥ s0.

Proof. The proof is made in two steps: we first decompose the solution of (4.2) to have a regular
source term with suitable decay in t and for which we will apply the Carleman estimate. This
decomposition will then allow us to employ a bootstrap argument to estimate the local terms
coming from the higher order norms on the right-hand side of the Carleman estimate.

Step 1. Decomposition of the solution. Let us decompose the solution φ of (4.2), with the aim of
obtaining L2 regularity on the right-hand side of (4.2). Let us introduce z and u, solutions of −zt − p(x)zxxx − zx − yzx = ρ0g, (t, x) ∈ (0, T ) × (0, L),

z(t, 0) = z(t, L) = zx(t, 0) = 0, t ∈ (0, T ),
z(T, x) = 0, x ∈ (0, L),

(4.6)

and  −ut − p(x)uxxx − ux − yux = (−ρ0)tφ, (t, x) ∈ (0, T ) × (0, L),
u(t, 0) = u(t, L) = ux(t, 0) = 0, t ∈ (0, T ),

u(T, x) = 0, x ∈ (0, L),
(4.7)

both of them coupled by the corresponding transmission conditions (TC), with ρ0(t) := e−sη̂. By
uniqueness, we have ρ0φ = u+ z. For the first system, using the regularity result for (4.6), we have

∥z∥2L2(0,T ;H2
Γ(0,L))

≤ C∥ρ0g∥2L2(Q). (4.8)
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Now, we apply the Carleman estimate of Theorem 1.1 for solutions of (4.7), with the new weights
(4.4) and fixed λ as above, obtaining

C

∫∫
Q
e−2sη̂(s5ζ5|u|2 + s3ζ3|ux|2 + sζ|uxx|2)dxdt ≤

∫∫
Q
e−2sη̂|g|2dxdt

+

∫∫
(0,T )×ω

e−2sη̆(s5ζ5|u|2dxdt+ s3ζ3|ux|2dxdt+ sζ|uxx|2)dxdt. (4.9)

Observe that on the right-hand side, we used |(ρ0)tφ| ≤ Csξ3/2|ρ0φ| followed by the relation ρ0φ =
u+ z, to then absorb the term containing u for s large enough and conclude using estimate (4.8).

Step 2. Local estimates. By classical interpolation (see Lions-Magenes [LM72, Section 9])

H1(ω) = (H3(ω), L2(ω))2/3,2, H
2(ω) = (H3(ω), L2(ω))1/3,2.

Let ε > 0. By Young’s inequality with (p, q) = (3/2, 3) we get

s3
∫∫

(0,T )×ω
ζ3e−2sη̆|ux|2dxdt ≤ s3

∫ T

0
ζ3e−2sη̆∥u∥4/3

L2(ω)
∥u∥2/3

H3(ω)
dt

≤ Cεs
11/2

∫ T

0
ζ11/2e−3sη̆+sη̂∥u∥2L2(ω)dt+ εs−2

∫ T

0
ζ−2e−s2η̂∥u∥2H3(ω)dt.

Similarly, with (p, q) = (3, 3/2) we get

s

∫∫
(0,T )×ω

e−2sη̆ζ|uxx|2dxdt ≤ s

∫ T

0
ζe−2sη̆∥u∥2/3

L2(ω)
∥u∥4/3

H3(ω)
dt

≤ Cεs
7

∫ T

0
ζ7e−6sη̆+4sη̂∥u∥2L2(ω)dt+ εs−2

∫ T

0
ζ−2e−2sη̂∥u∥2H3(ω)dt.

From the Carleman estimate and the inequalities above, we get

C

∫∫
Q
e−2sη(s5ζ5|u|2 + s3ζ3|ux|2 + sζ|uxx|2)dxdt

≤
∫∫

Q
e−2sη̂|g|2dxdt+ s7

∫∫
(0,T )×ω

ζ7e−6sη̆+4sη̂|u|2dxdt+ ε

(
s−2

∫ T

0
ζ−2e−2sη̂∥u∥2H3(ω)dt

)
.

We want to estimate the local term containing ∥u∥2H3(ω). By looking at the weights accompanying

the local H3-norm, let us introduce û = ρ̂(t)u with ρ̂(t) := s−1/2λ−1ζ−1/2e−sη̂. We thus see that û
solves (4.11) with ρ̃ replaced by ρ̂, −ût − p(x)ûxxx − ûx − yûx = ρ̂(−ρ0)tφ− ρ̂tu, (t, x) ∈ (0, T ) × (0, L),

û(t, 0) = û(t, L) = ûx(t, 0) = 0, t ∈ (0, T ),
û(T, x) = 0, x ∈ (0, L),

(4.10)

coupled by the corresponding transmission conditions (TC). Since φ ∈ C([0, T ],D(A∗)), using the
regularity estimates given by Proposition 2.12, we have

∥s−1/2ζ−1/2e−sη̂u∥2L2(0,T ;H3
Γ(0,L))

= ∥û∥2L2(0,T ;H3
Γ(0,L))

≤ C
(
∥s1/2ζe−sη̂u∥2L2(0,T ;H1(0,L)) + ∥s1/2ζe−2sη̂φ∥2L2(0,T ;H1(0,L))

)
.
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We are then led to define ũ = ρ̃(t)u with ρ̃(t) = s1/2ζe−sη̂ aiming to estimate the first term of the
right-hand side in the inequality above. We see that ũ is the solution of −ũt − p(x)ũxxx − ũx − yũx = ρ̃(−ρ0)tφ− ρ̃tu, (t, x) ∈ (0, T ) × (0, L),

ũ(t, 0) = ũ(t, L) = ũx(t, 0) = 0, t ∈ (0, T ),
ũ(T, x) = 0, x ∈ (0, L),

(4.11)

coupled by the corresponding transmission conditions (TC). As |(ρ0)t| ≲ sζ3/2e−sη̂, we get

|ρ̃t| = s1/2|ζtρ0(t) + ζ(ρ0)t| ≲
(
s1/2ζ3/2 + s3/2ζ5/2

)
ρ0 ≲ s3/2ζ5/2e−sη̂.

Using once again Proposition 2.12, we obtain

∥s1/2ζe−sη̂u∥2L2(0,T ;H2
Γ(0,L))

= ∥ũ∥2L2(0,T ;H2
Γ(0,L))

≤ C
(
∥s3/2ζ5/2e−sη̂u∥2L2(Q) + ∥s3/2ζ5/2e−2sη̂φ∥2L2(Q)

)
.

Gathering the above inequalities, we have

∥s−1/2ζ−1/2e−sη̂u∥2L2(0,T ;H3
Γ(0,L))

≤ C
(
∥s3/2ζ5/2e−sη̂u∥2L2(Q)

+ ∥s3/2ζ5/2e−2sη̂φ∥2L2(Q) + ∥s1/2ζe−2sη̂φ∥2L2(0,T ;H1(0,L))

)
.

Since (s, t) 7→ s3/2ζ5/2e−sη̂ is bounded, using (4.8) we see that the right-hand side of the inequality
above is bounded by the left-hand side of the Carleman estimate (4.9) and ∥ρ0g∥2L2(Q). Therefore∫∫

Q
e−2sη(s5ζ5|u|2 + s3ζ3|ux|2 + sζ|uxx|2)dxdt+ ∥s−1/2ζ−1/2e−sη̂u∥2L2(0,T ;H3

Γ(0,L))

≤ C

(∫∫
Q
e−2sη̂|g|2dxdt+ s7

∫∫
(0,T )×ω

e−6sη̆+4sη̂ζ7|u|2dxdt

)
+ε

(
s−2

∫ T

0
ζ−2e−2sη̂∥u∥2H3(ω)dt

)
.

Choosing ε > 0 small enough, the last term on the right-hand side above, can be absorbed by the
last term on the left-hand side above. To return to the φ variable, we use ρ0φ = z+u and estimate
(4.8) to get∫∫

Q
e−4sη̂(s5ξ5|φ|2 + s3ξ3|φx|2 + sξ|φxx|2)dxdt

≤ C

(∫∫
Q
e−2sη̂|g|2dxdt+

∫∫
Q
e−2sη(s5ζ5|u|2 + s3ζ3|ux|2 + sζ|uxx|2)dxdt

)
.

Once again, using estimate (4.8) and that (s, t) 7→ s7e−6sη̆+4sη̂ζ7 is bounded for s ≥ s0 and t ∈ (0, T ),
we obtain

s7
∫∫

(0,T )×ω
e−6sη̆+4sη̂ζ7|u|2dxdt ≤ C

(∫∫
Q
e−2sη̂|g|2dxdt+ s7

∫∫
(0,T )×ω

e−6sη̆+2sη̂ζ7|φ|2dxdt

)
.

Putting together the three last estimates, we arrive to inequality (4.5), finishing the proof. □

For notational convenience, we introduce L∗ : V∗ → L2(Q), the adjoint operator to (4.3)

L∗ψ := −ψt − p(x)ψxxx − ψx − yψx, (4.12)

defined on the space of functions

V∗ := {ψ ∈ L2(0, T ;H3
Γ(0, L)) | L∗ψ ∈ L2(Q), ψ(0) = ψ(L) = ψ′(0) = 0 and ψ satisfies (TC)}.

We now introduce weight that does not vanish at t = 0. Let ℓ ∈ C1([0, T ]) be a positive function in
[0, T ) defined by

ℓ(t) =

{
T 2/4 t ∈ [0, T/2]
t(T − t) t ∈ [T/2, T ]
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We then consider

α(t, x) = (eκλ∥β∥∞ − eλβ(x))τ(t), τ(t) =
1

ℓ(t)
, α̂(t) = max

x∈[0,L]
α(t, x), ᾰ(t) = min

x∈[0,L]
α(t, x).

We further ask that λ ≥ κ2/∥β∥∞, where κ is the parameter used in Lemma 3.1. Thus, from now
on we assume that λ ≥ max{λ0, κ2/∥β∥∞} and therefore 2α̂ < 3ᾰ holds. As a consequence of
Proposition 4.1 we have the following weighted observability inequality.

Lemma 4.2. Under the assumptions of Lemma 4.2, there exist s and C such that every solution
φ of (4.2) satisfies∫∫

Q
e−4sα̂(τ5|φ|2 + τ3|φx|2 + τ |φxx|2)dxdt+ ∥φ(0)∥2L2(0,L)

≤ C

(∫∫
Q
e−2sα̂|g|2dxdt+

∫∫
(0,T )×ω

e−6sᾰ+2sα̂τ7|φ|2dxdt

)
. (4.13)

Proof. By construction, η = α and τ = ζ in (T/2, T ) × [0, L]. Therefore, as a consequence of
Proposition 4.1 we get∫ T

T/2

∫ L

0
e−4sα̂(s5τ5|φ|2 + s3τ3|φx|2 + sτ |φxx|2)dxdt

=

∫ T

T/2

∫ L

0
e−4sη̂(s5ζ5|φ|2 + s3ζ3|φx|2 + sζ|φxx|2)dxdt

≤ C

(∫∫
Q
e−2sη̂|g|2dxdt+ s7

∫∫
(0,T )×ω

e−6sη̆+4sη̂ζ7|φ|2dxdt

)
.

From now on, let us fix s ≥ s0. By construction of the weights, we only need to focus the analysis
on (0, T/2). Using inequalities e−2sη̂ ≤ C and e−6sη̆+4sη̂ζ7 ≥ C in [0, T/2], followed by the fact that
τ is constant in [0, T/2], we get∫ T

T/2

∫ L

0
e−4sα̂(s5τ5|φ|2 + s3τ3|φx|2 + sτ |φxx|2)dxdt

≤ C

(∫∫
Q
e−2sα̂|g|2dxdt+

∫∫
(0,T )×ω

e−6sᾰ+4sα̂τ7|φ|2dxdt

)
. (4.14)

Let us take a cutoff χ ∈ C1([0, T ]) such that χ ≡ 1 in [0, T/2] and χ ≡ 0 in [3T/4, T ]. Observe
that χφ ∈ V∗, χ(T )φ(T, ·) = 0 and L∗(χφ) = χL∗φ − χ′φ. Thus, given that g ∈ L2(0, T ;D(A∗)),
by semigroup estimates we get

∥χφ∥C([0,T ],L2(0,L)) ≤ C∥χg − χ′φ∥L2(0,T ;L2(0,L)),

from which follows

∥φ∥C([0,T/2],L2(0,L)) ≤ C∥g∥L2(0,3T/4;L2(0,L)) + ∥φ∥L2(T/2,3T/4;L2(0,L)).

By employing Proposition 2.12 and the above estimate, we obtain

∥φ(0)∥2L2(0,L) + ∥φ∥2L2(0,T/2;H2
Γ(0,L))

≤ C
(
∥g∥2L2(0,3T/4;L2(0,L)) + ∥φ∥2L2(T/2,3T/4;L2((0,L))

)
.

Taking into account that

τ5e−2sα̂ ≥ C > 0, ∀t ∈ [T/2, 3T/4] and e−4sα̂ ≥ C > 0, ∀t ∈ [0, 3T/4],

we arrive to
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C

∫ T/2

0

∫ L

0
e−4sα̂(s5τ5|φ|2 + s3τ3|φx|2 + sτ |φxx|2)dxdt+ ∥φ(0)∥2L2(0,L)

≤
∫ 3T/4

0

∫ L

0
e−2sα̂|g|2dxdt+

∫ 3T/4

T/2

∫ L

0
e−6sᾰ+4sα̂τ5|φ|2dxdt. (4.15)

Inequality (4.13) then follows, upon adjusting s ≥ s0 if necessary, by combining (4.14) and (4.15).
□

4.2. Null controllability of the linearized system. Let us introduce the space

E := {(z, v) | esα̂z ∈ L2(Q), τ−9/2e3sᾰ−sα̂v1ω ∈ L2(Q),

esα̂τ−3/2z ∈ X 0
T (0, L), e2sα̂τ−5/2(Lz − 1ωv) ∈ L2(0, T ;H−1(0, L))},

which is a Banach space when equipped with the norm whose square is given by

∥(z, v)∥2E = ∥esα̂z∥2L2(Q) + ∥τ−9/2e3sᾰ−sα̂v1ω∥2L2(Q)

+ ∥esα̂τ−3/2z∥X 0
T (0,L) + ∥e2sα̂τ−5/2(Lz − v1ω)∥2L2(0,T ;H−1(0,L)).

We now aim to solve (4.1) in the space E with a right-hand side in an appropriate weighted space.

Indeed, in such case, from which the null controllability of the system follows given that esα̂τ−3/2z ∈
C([0, T ], L2(0, L)) implies that z(T, ·) = 0.

Proposition 4.3. Let (ω, p) satisfy Hypothesis M and let T > 0. For any z0 ∈ L2(0, L) and

e2sα̂τ−5/2h ∈ L2(Q), there exists a function v ∈ L2(0, T ;L2(ω)) such that the associated solution
(z, v) to (4.1) satisfies (z, v) ∈ E. Furthermore, there exists C > 0 such that

∥v∥L2(0,T ;L2(ω)) ≤ C
(
∥z0∥L2(0,L) + ∥h∥L2(Q)

)
. (4.16)

Proof. Set Q0 to be the space of functions φ ∈ C3([0, T ] × ([0, L] \ Γ)) such that:

• φ|Ik
∈ C3([0, T ] × Ik), k ∈ J0, N − 1K;

• φ satisfies the transmission conditions (TC);
• φ satisfies the boundary conditions φ(t, 0) = φ(t, L) = φx(t, 0) = 0, t ∈ (0, T ).

Let us introduce the bilinear form a(·, ·) on Q0

a(φ̂, w) :=

∫∫
Q
e−2sα̂(L∗φ̂)(L∗w)dxdt+

∫∫
ω×(0,T )

e−6sᾰ+2sα̂τ7φ̂wdxdt, ∀(φ̂, w) ∈ Q0 ×Q0,

where L∗ is the adjoint operator of L defined in (4.3). Observe that Carleman inequality (4.13) is
applicable for any w ∈ Q0, thus∫∫

Q
τ5e−4sα̂|w|2dxdt+ ∥w(0)∥2L2(0,L) ≤ Ca(w,w), ∀w ∈ Q0. (4.17)

In particular, a unique continuation property holds, in other words, a(w,w) = 0 implies that w = 0
in Q0. Further, observe that the bound given here above implies that a(·, ·) : Q0 × Q0 → R is
a coercive bilinear form. It being symmetric as well, a(·, ·) defines an inner product in Q0. We
introduce Q as the completion of Q0 for the form induced by a(·, ·), which we denote by ∥·∥Q.
Certainly, Q is a Hilbert space and a(·, ·) is a continuous and coercive bilinear form on Q.

Let us introduce the linear form G, given by

⟨G, w⟩ :=

∫∫
Q
hwdxdt+

∫ L

0
z0(x)w(0, x)dx, ∀w ∈ Q.
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Given that e2sα̂τ−5/2h ∈ L2(Q), by the Carleman inequality (4.13), the linear form w ∈ Q 7→
⟨G,w⟩ ∈ R is well-defined and continuous. Indeed,

|⟨G, w⟩| ≤ ∥esα̂τ−5/4h∥L2(Q)∥e−sα̂τ5/4w∥L2(Q) + ∥z0∥L2(0,L)∥w(0, ·)∥L2(0,L),

and using inequality (4.17) along with the density of Q0 in Q, we have

|⟨G, w⟩| ≤
(
∥esα̂τ−5/4h∥L2(Q) + ∥z0∥L2(0,L)

)
∥w∥Q, (4.18)

valid for any w ∈ Q. Applying Lax-Milgram’s lemma, there exists a unique φ̂ ∈ Q such that

a(φ̂, w) = ⟨G, w⟩, ∀w ∈ Q. (4.19)

Introduce {
ẑ := e−2sα̂L∗φ̂, in Q,
v̂ := −e−6sᾰ+2sα̂τ7φ̂, in (0, T ) × ω.

Given that φ̂ ∈ Q, we notice that the pair (ẑ, v̂) verifies

a(φ̂, φ̂) =

∫∫
Q
e2sα̂|ẑ|2dxdt+

∫∫
(0,T )×ω

e6sᾰ−2sα̂τ−7|v̂|2dxdt < +∞. (4.20)

Furthermore, we see that ẑ is the unique solution by transposition of (4.1) with v replaced by v̂.
Indeed, from (4.19) we readily get the variational identity: for every g ∈ L2(Q) we have∫∫

Q
ẑgdxdt =

∫∫
Q

(h+ v̂)wdxdt+

∫ L

0
z0(x)w(0, x)dx,

with w ∈ X 0
T (0, L) solution of the adjoint (4.2) with right-hand side g and w(T, ·) = 0, whose

existence is guaranteed by Proposition 2.12.
As a last step, we verify that (ẑ, v̂) ∈ E . From (4.20) we readily get esα̂ẑ ∈ L2(Q) and

e3sᾰ−sα̂τ−7/2v̂ ∈ L2(Q). Moreover, using the equation and that e2sα̂τ−5/2h ∈ L2(Q), we readily get

e2sα̂τ−5/2(Lẑ − 1ωv̂) ∈ L2(Q).

To check that esα̂τ−3/2ẑ ∈ X 0
T (0, L), we define

z∗ := esα̂τ−3/2ẑ and h∗ = esα̂τ−3/2(h+ v̂).

Observe that z∗ satisfies the system z∗t + p(x)z∗xxx + z∗x + (yz∗)x = h∗ + (esα̂τ−3/2)tẑ, (t, x) ∈ (0, T ) × (0, L),
z∗(t, 0) = z∗(t, L) = z∗x(t, L) = 0, t ∈ (0, T ),

z∗(0, x) = esα̂(0)τ−3/2(0)ẑ0(x), x ∈ (0, L),

coupled by the corresponding transmission conditions (TC). Since esα̂h ∈ L2(Q) and 2α̂ < 3ᾰ,

we get h∗ ∈ L2(Q) and (esα̂τ−3/2)tẑ ∈ L2(Q). For ẑ0 ∈ L2(0, L), Proposition 2.3 along with an
argument similar to the one used in Proposition 2.12 give us z∗ ∈ X 0

T (0, L).
By considering v̂ as before, the bilinear form a and identity (4.19), we obtain estimate (4.16). □

4.3. Control of the nonlinear system. The last step relies on a local inversion result.

Theorem 4.4. [FI96, Chapter I, Section 4, Theorem 4.1] Suppose that B1, B2 are Banach spaces
and F : B1 → B2 is a continuously differentiable map. We assume that for b01 ∈ B1, b

0
2 ∈ B2 the

equality

F(b01) = b02

holds and F ′(b01) : B1 → B2 is a surjective. Then there exists δ > 0 such that for any b2 ∈ B2 which
satisfies the condition ∥b02 − b2∥B2 < δ there exists a solution b1 ∈ B1 of the equation

F(b1) = b2.
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We now prove the main control result for the nonlinear system.

Proof of Theorem 1.2. Let us set

B1 := E and B2 = L2
(
e2sα̂τ−5/2(0, T );L2(0, L)

)
× L2(0, L)

and the operator F : B1 → B2 defined by

F(y, v) =
(
zt + p(x)zxxx + zx + (yz)x + zzx − 1ωv, z(0)

)
.

We now prove that F is of class C1(B1,B2). Let us assume that y ∈ X 0
T (0, L). By linearity, it only

remains to prove that the bilinear operator(
(z1, v1), (z2, v2)

)
∈ E × E 7−→ 1

2
(z1z2)x ∈ L2

(
e2sα̂τ−5/2(0, T );L2(0, L)

)
is continuous. Observe that

e2sα̂τ−5/2z ∈ X 0
T (0, L),

for any (z, v) ∈ E . By Sobolev embedding H1(0, L) ↪→ L∞(0, L), we have

∥e2sα̂τ−5/2(z1z2)x∥L2(Q) ≤ C

∫ T

0

(
e2sα̂τ−3∥z1∥2L∞(0,L)e

2sα̂τ−3∥z2∥H1(0,L)+

+ e2sα̂τ−3∥z2∥2L∞(0,L)e
2sα̂τ−3∥z1∥H1(0,L)

)
dt

≤ C∥z1∥B1∥z2∥B1 .

We are in position to apply Theorem 4.4, with b01 = (0, 0) ∈ B1 and b2 = 0 ∈ B2. The derivative
F ′(0, 0) : B1 → B2 is given by

F(0, 0)(z, v) =
(
zt + p(x)zxxx + zx + (yz)x − 1ωv, z(0)

)
, ∀(z, v) ∈ B1.

Thus, there exists δ > 0 such that, if ∥z(0)∥L2(0,L) ≤ δ, we can find a control v such that the
associated solution z of the nonlinear system (1.9) satisfies z(T, ·) = 0 on (0, L). This finishes the
proof. □

5. Lipschitz stability in retrieving an unknown potential

In this section we follow [BCCM14]. A key point in the latter work is that some symmetry
assumptions on the coefficient to recover and on the initial data are made, in order to avoid an
observation of the solution in some time T0 > 0, as usual in the parabolic case. To adapt this point
to our case, we introduced Assumption I, which will allow us to apply the Carleman estimate and
carry out the method.

We will also need the following slight modification of Theorem 1.1. Let ω0 ⋐ ω be non-empty
and open, κ ∈ (1, 2) and β be constructed by Lemma 3.1 with ω0 as before. A Carleman estimate
on Q := (−T, T ) × (0, L) like the one in Theorem 1.1 can be derived just by modifying the weights
η and ξ as follows:

η(t, x) =
eκλ∥β∥∞ − eλβ(x)

(t+ T )(T − t)
and ξ(t, x) =

eλβ(x)

(t+ T )(T − t)

for (t, x) ∈ Q. More precisely, we have the following.

Proposition 5.1. Let η and ξ be as previously defined. Under Hypothesis M, there exist s0 > 0,
λ0 > 0 and a constant C > 0 depending on ω, Γ, L, T , p, ∥β∥C3([0,L]\Γ), s0 and λ0 such that for
any u ∈ V we have

C

∫∫
Q
e−2sη(s5λ6ξ5|u|2 + s3λ4ξ3|ux|2 + sλ2ξ|uxx|2)dxdt ≤ ∥e−sηLu∥2L2(Q)
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+

∫∫
(−T,T )×ω

e−2sη(s5λ6ξ5|u|2dxdt+ s3λ4ξ3|ux|2dxdt+ sλ2ξ|uxx|2)dxdt (5.1)

for any s ≥ s0 and λ ≥ λ0, with L and V similarly defined as in (1.3).

With this inequality at hand, we can prove the Lipschitz stability result.

Proof of Theorem 1.3. The existence of solutions for initial data y0 ∈ H6
Γ(0, L) ∩ H3

Γ(0, L) can be
established following the framework of Bona, Sun and Zhang [BSZ03, Theorem 4.1]. First of all,
the addition of the term µ(x)yx on the linear part is easily handled by a fixed-point argument as
in Proposition 2.6. Second, we need to look at the equation satisfied by w = ytt and then, similar
arguments as in Proposition 2.6 can be used to establish the needed estimates and to prove that for
y0 ∈ H6

Γ(0, L) ∩ H3
Γ(0, L), the corresponding solution y belongs to C([0, T ], H6

Γ(0, L) ∩ H3
Γ(0, L)) ∩

L2(0, T ;H7
Γ(0, L) ∩ H3

Γ(0, L)). By using classical Sobolev embedding on each Ik, this ensures the
regularity needed to employ the Bukhgĕım-Klibanov method.

Let us consider two coefficients µ = µ(x) and ν = ν(x) belonging to Psym
≤m (0, L) with the corre-

sponding solutions y := y[µ] and z := z[ν] of (1.10) with the same main coefficient p and initial
condition y0 ∈ H6

Γ(0, L) ∩H3
Γ(0, L). Let us define

u(t, x) := y(t, x) − z(t, x) and σ(x) := ν(x) − µ(x).

Step 1: auxiliary system. Let v = ut and note that v0(x) := σ(x)y′0(x) satisfies v0(x) = v0(L − x)
for all x ∈ [0, L]. The system satisfied by ψ := v̂ is

ψt + p(x)ψxxx + (1 + ẑ)ψx + ŷxψ = f̌ , (t, x) ∈ (−T, T ) × (0, L),
ψ(t, 0) = ψ(t, L) = 0, t ∈ (−T, T ),

ψx(t, L) = 0, t ∈ (0, T ),
ψx(t, L) = −vx(0,−t), t ∈ (−T, 0),
ψ(0, x) = σ(x)y′0(x), x ∈ (0, L),

coupled by the corresponding transmission conditions (TC) with coefficient p, with f := σ(x)zxt −
yxtu− ztux and the symmetric and anti-symmetric extensions being defined, respectively, as

ĝ(t, x) =

{
g(t, x), (t, x) ∈ [0, T ] × [0, L],
g(t, L− x), (t, x) ∈ [−T, 0) × [0, L],

ǧ(t, x) =

{
g(t, x), (t, x) ∈ [0, T ] × [0, L],
−g(−t, L− x), (t, x) ∈ [−T, 0) × [0, L].

Step 2: First use of the Carleman estimate. By compactness, we can find ω0 ⋐ ω which is symmetric
with respect to L/2 and (ω0, p) satisfies Hypothesis M. Let K > 0 be some constant such that

max{∥y∥W 1,∞(0,T ;W 1,∞(0,L)), ∥z∥W 1,∞(0,T ;W 1,∞(0,L))} ≤ K. (5.2)

This is consistent given that y, z ∈ C([0, T ], H6
Γ(0, L)∩H3

Γ(0, L)) and by classical Sobolev embedding
H1(Ik) ↪→ L∞(Ik) applied on each k ∈ J0, N − 1K. We shall focus on the following integral∫ 0

−T

∫ L

0
ξ2wL1wdxdt =

1

2

∫ L

0
ξ2(0, x)|w(0, x)|2dx+ J , (5.3)

where J can be estimated by the Carleman estimate for the conjugated operator (obtained through-
out the proof of Proposition 5.1, compare with Proposition 3.3) as follows

|J | ≤ Cs−3λ−3

(∫∫
e−2sη|f̌ |2dxdt

+

∫∫
(−T,T )×ω0

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt

)
. (5.4)
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Since |y′0(x)| ≥ r0 > 0, we get∫ L

0
ξ2(0, x)|w(0, x)|2dx =

∫ L

0
e−2sη(0,x)ξ2(0, x)|σ(x)y′0(x)|2dx

≥ r20

∫ L

0
e−2sη(0,x)ξ2(0, x)|σ(x)|2dx.

Thus, we can use the last inequality to get a bound by below from identity (5.3) and then use (5.4)
along with Young’s inequality to get a bound by above, resulting in∫ L

0
e−2sη(0,x)ξ2(0, x)|σ(x)|2dx ≲ s−5/2λ−3

(∫∫
e−2sη|f̌ |2dxdt

+

∫∫
(−T,T )×ω0

(s5λ6ξ5|w|2dxdt+ s3λ4ξ3|wx|2dxdt+ sλ2ξ|wxx|2)dxdt

)
for s ≥ s0 and λ ≥ λ0. using the fact that η is even in time and w = e−2sηψ = e−2sηv̂ we have∫ L

0
e−2sη(0,x)ξ2(0, x)|σ(x)|2dx ≲ s−5/2λ−3

(∫∫
Q

(e−2sη(t,x) + e−2sη(t,L−x))|f |2dxdt+ Mω0(v)

)
(5.5)

where, Mω0(v) gathers the local terms in v as follows

Mω0(v) :=

∫∫
(0,T )×ω0

(s5ξ5e
−2sη|v|2 + s3ξ3e

−2sη|vx|2 + sξ1e
−2sη|vxx|2)dxdt, (5.6)

with ξk defined as ξk(t, x) := ξk(t, x) + ξk(t, L− x), (t, x) ∈ Q, for k = 1, 3, 5. Observe that we just
used the change of variables x 7→ L− x and that ω0 is symmetric with respect to L/2.

We now look at the terms involving f . By using the bound (5.2), we get∫∫
Q
e−2sη(t,x)|f |2dxdt =

∫∫
Q
e−2sη(t,x)|σ(x)zxt − yxtu− ztux|2dxdt

≲
∫ L

0
e−2sη(0,x)|σ(x)|2dx+

∫ T

0

∫ L

0
e−2sη(|u|2 + |ux|2)dxdt.

Similarly, we have∫∫
Q
e−2sη(t,L−x)|f |2dxdt =

∫∫
Q
e−2sη(t,L−x)|σ(x)zxt − yxtu− ztux|2dxdt

≲
∫ L

0
e−2sη(0,L−x)|σ(x)|2dx+

∫ T

0

∫ L

0
e−2sη(t,L−x)(|u|2 + |ux|2)dxdt

=

∫ L

0
e−2sη(0,x)|σ(x)|2dx+

∫ 0

−T

∫ L

0
e−2sη(t,x)(|û|2 + |ûx|2)dxdt,

where we used that t ∈ [0, T ) 7→ e−sη(t,L−x) is decreasing for any x ∈ [0, L] and the change of
variables x 7→ L− x. Gathering the last two inequalities we obtain∫∫

Q
(e−2sη(t,x) + e−2sη(t,L−x))|f |2dxdt ≲

∫ L

0
e−2sη(0,x)|σ(x)|2dx+

∫ T

−T

∫ L

0
e−2sη(|û|2 + |ûx|2)dxdt.

(5.7)

It remains to estimate the second term on the right-hand side of the above inequality.
Step 3: Second use of the Carleman estimate. We apply the Carleman estimate (5.1) to the equation
satisfied by û to obtain
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−T

∫ L

0
e−2sη(t,x)(|û|2 + |ûx|2)dxdt ≲ s−3λ−4

(∫ T

−T

∫ L

0
e−2sη|σzxt|2dxdt

+

∫∫
(−T,T )×ω0

e−2sη(s5ξ5|û|2dxdt+ s3ξ3|ûx|2dxdt+ sξ|ûxx|2)dxdt

)
.

As before, we use the bound (5.2) to bound the first term. Then, we use the definition of the
symmetric extension to we rewrite the local terms at the right-hand side of the last inequality as
integrals over (0, T ) × ω0, Thus, with Mω0(u) as defined in (5.6), we get∫ T

−T

∫ L

0
e−2sη(t,x)(|û|2 + |ûx|2)dxdt ≲ s−3λ−4

(∫ L

0
e−2sη(0,x)|σ(x)|2dx+ Mω0(u)

)
. (5.8)

Putting together inequalities (5.5)-(5.7)-(5.8) and then using that x ∈ [0, L] 7→ e−2sη(0,x)ξ2(0, x) is
positively bounded by below, we obtain that(

1 − (s−11/2λ−7 + s−5/2λ−3)
) ∫ L

0
|σ(x)|2dx ≲ (s−5/2λ−3Mω0(v) + s−3λ−4Mω0(u)) (5.9)

for any s ≥ s0 and λ ≥ λ0. Noticing that (t, x) ∈ (0, T ) × ω0 7→ skξk(t, x)e−2sη(t,x) is bounded by
above for k = 1, 3, 5, we readily get

Mω0(u) + Mω0(v) ≲ ∥y − z∥H1(0,T ;H2(ω0)).

Since σ = µ− ν and ω0 ⋐ ω, the proof ends by choosing s and λ large enough in (5.9) so that the
left-hand side is made positive. □

Remark 5.2. We point out that the regularity assumption y0 ∈ H6
Γ(0, L) ∩ H3

Γ(0, L) is not sharp.
From the proof, we need that zxt, yxt belong to L∞(Q), which would follow by Sobolev embedding
provided they both belong to L∞([0, T ], Hs(0, L)), with s > 1/2. This could be achieved if we
ask y0 ∈ H4+s

Γ (0, L) ∩ H3
Γ(0, L). Nevertheless, a rigorous proof will employ Tartar’s nonlinear

interpolation (see [BSZ03, Section 4]) and a characterization for interpolation of spaces involving
the transmission conditions (2.2). The latter is most likely to be true, but up to the author’s
knowledge, there is no straightforward proof of such a fact available in the current literature. We
do not deepen in this direction as it is outside of the scope of this work.

6. Some further remarks

6.1. Boundary observability. Under the hypothesis pk > pk−1 with k ∈ J0, N − 1K, a straight-
forward modification to the proof of Lemma 3.1 lead us to the construction of β with observation
at x = 0. Given λ > 0, we define

η(t, x) =
eκλ∥β∥∞ − eλβ(x)

t(T − t)
and ξ(t, x) =

eλβ(x)

t(T − t)
, (6.1)

for all (t, x) ∈ Q and some κ ∈ (1, 2). By following the same steps as before, we can obtain a
Carleman estimate with boundary observation for the solutions of the system φt + p(x)φxxx + φx = 0, (t, x) ∈ (0, T ) × (0, L),

φ(t, 0) = φ(t, L) = φx(t, 0) = 0, t ∈ (0, T ),
φ(T, x) = φT (x), x ∈ (0, L),

(6.2)

coupled by the usual transmission conditions (TC). The Carleman estimate is the following.
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Proposition 6.1. Let η and ξ be the weight functions defined by (6.1). Suppose that pk > pk−1 for
all k ∈ J1, N − 1K. Then there exist s0 > 0, λ0 > 0 and a constant C > 0 depending on L, T , ρ0,
ρ1, ∥β∥C3, r, s0 and λ0 such that for all φT ∈ D(A∗) we have

C

∫∫
Q
e−2sη(s5λ6ξ5|φ|2 + s3λ4ξ3|φx|2 + sλ2ξ|φxx|2)dxdt ≤ sλ

∫ T

0
e−2sη(t,0)ξ(t, 0)|φxx(t, 0)|2dt,

for any s ≥ s0 and λ ≥ λ0, where φ is the solution of (6.2) associated to φT .

As classically done by the HUM method, under the hypothesis that pk > pk−1 for k ∈ J1, N − 1K,
the previous Carleman estimate can be combined with a dissipation estimate to obtain, for instance,
the boundary null controllability of the linear KdV equation yt + p(x)yxxx + yx = 0, (t, x) ∈ (0, T ) × (0, L),

y(t, 0) = h(t), y(t, L) = yx(t, L) = 0, t ∈ (0, T ),
y(0, x) = y0(x), x ∈ (0, L),

coupled by the transmission conditions (TC), with control h ∈ L2(0, T ) and y0 ∈ L2(0, L).
In regards to the boundary control to the trajectories for the constant main coefficient case,

Glass and Guerrero [GG08] provided a positive result with one control acting on the left point of
the interval. Trying to adapt their ideas to the discontinuous case is an interesting problem, as the
proof is more involved, mainly due to the several regularity technicalities related to the boundary
value problem and also that it heavily uses interpolation arguments. The latter is a problem in
itself in the case of discontinuous coefficients, see Remark 2.11. We point out that similar issues
has been faced in Parada [Par24] when studying the KdV equation on a star-shaped network.

Additionally, for the problem of exact controllability when only one control is acting on the
boundary, one may expect to see the critical length phenomena in the discontinuous setting as well.
Thus, the problem of exact controllability for every time, for a set of lengths and length of the set
of discontinuities is a wide open problem. See [Cré16, Proposition 4, Remark 2] where the control
is acting on the Neumann boundary condition.

6.2. Monotonicity hypothesis on the Carleman estimate. The monotonicity hypothesis on
p, enforced trough Assumption M, is crucial to obtain the Carleman estimate with main piecewise
constant coefficient. Indeed, we can then construct a weight function which is piecewise monotone
and satisfies the same transmission conditions as given by the main PDE under consideration, which
further allows us to obtain a weighted norm for the trace terms at the interface.

Regarding applications to inverse problems, it is worth noticing that a similar Carleman estimate
with boundary observation as the one used in [BCCM14] can be obtained under the hypothesis
pk > pk−1, k ∈ J1, N − 1K (see also Proposition 6.1). However, this monotonicity condition is
not compatible with Hypothesis M, the latter being necessary to employ the reflection trick and
therefore to avoid observations in some time T0 ∈ (0, T ), as commonly found in the parabolic case.
Whether one can get rid of these monotonicity hypothesis on the coefficient p is an open problem.

The main difficulty is to construct a weight function that allows us to estimate the interface
terms coming from I12 in the Carleman estimate. These terms are not necessarily zero if the weight
function does not satisfy the transmission conditions. Observe that a similar difficulty is faced when
establishing a Carleman estimate for the KdV equation under Colin-Ghidaglia boundary conditions,
see Guilleron [Gui14] and Carreño and Guerrero [CG18].

Appendix A.

A.1. Inequalities toolbox. Let I ⊂ R be a non-empty interval and T > 0. Let us introduce for
s ≥ 0 the Banach space

Xs
T (I) = C([0, T ], L2(I)) ∩ L2(0, T ;Hs+1(I)),
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equipped with the natural norm. We have the following Lemma, used in Section 2 to obtain the
well-posedness of the nonlinear system (1.1); see Proposition 2.6.

Lemma A1. [BSZ03, Lemma 3.3] Let s ≥ 0 be given. There exists C > 0 such that for any T > 0
and u, v ∈ Xs

T (I),∫ T

0
∥u(t, ·)vx(t, ·)∥Hs(I)dt ≤ C(T 1/2 + T 1/3)∥u∥Xs

T (I)∥v∥Xs
T (I).

The following result allows us to consider yyx as a source term in (2.3)-(TC).

Proposition A2. [Ros97, Proposition 4.1] Let y ∈ L2(0, T ;H1(I)). Then yyx ∈ L1(0, T ;H1(I))
and the map

y ∈ L2(0, T ;H1(I)) 7−→ yyx ∈ L1(0, T ;L2(I))

is continuous and there exists C > 0 such that

∥yyx − zzx∥L1(0,T ;L2(I)) ≤ C
(
∥y∥L2(0,T ;H1(I)) + ∥z∥L2(0,T ;H1(I))

)
∥y − z∥L2(0,T ;H1(I)).
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