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UNIQUE CONTINUATION AND STABILIZATION FOR NONLINEAR
SCHRODINGER EQUATIONS UNDER THE
GEOMETRIC CONTROL CONDITION

CRISTOBAL LOYOLA

ABSTRACT. In this article we prove global propagation of analyticity in finite time for solutions of
semilinear Schrodinger equations with analytic nonlinearity from a region w where the Geometric
Control Condition holds. Our approach refines a recent technique introduced by Laurent and the
author, which combines control theory techniques and Galerkin approximation, to propagate ana-
lyticity in time from a zone where observability holds. As a main consequence, we obtain unique
continuation for subcritical semilinear Schrodinger equations on compact manifolds of dimension 2
and 3 when the solution is assumed to vanish on w. Furthermore, semiglobal control and stabi-
lization follow only under the Geometric Control Condition on the observation zone. In particular,
this answers in the affirmative an open question of Dehman, Gérard, and Lebeau from 2006 for the
nonlinear case.
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2 UNIQUE CONTINUATION AND STABILIZATION FOR NLS UNDER THE GCC

1. INTRODUCTION

The aim of this article is to study how, for a certain class of evolution PDEs, properties observed
from a subset w C M over the time (0,7 are propagated to the whole solution on (0,7") x M.
Here, M can be, for instance, a compact Riemannian manifold without boundary. More precisely,
we will study the following two properties:

(1) Propagation of analyticity: if the solution is analytic in time on (0,7") X w, is the full
solution analytic in time on (0,7") x M?
(2) Unique continuation: if the solution is zero on [0,7] X w, is the solution identically zero
on [0,7] x M?
We refine the method introduced in [LL24] by broadening the class of admissible nonlinearities, thus
extending its scope to a wider class of conservative equations. This method relies on observability
estimates, a Galerkin procedure, and the interaction of low and high frequencies through the nonlin-
earity. We provide an abstract result, detailed in Section 1.2, that allows us to propagate analyticity
in time from the observation to the full solution. We present the main applications to nonlinear
Schrodinger equations, where, notably, we obtain global unique continuation under the Geometric
Control Condition and give applications in control theory, see Section 1.1. We believe that the
abstract method could be applied to several other systems and is amenable to generalizations.
To motivate the abstract result, we begin by describing the case of nonlinear Schrédinger equa-
tions.

1.1. Main results on nonlinear Schrédinger equation. Let (M, g) be a compact boundaryless
smooth connected Riemannian manifold of dimension d. Let A, be the Laplace-Beltrami operator
on M associated to the metric g. In this section we consider the semilinear Schrédinger equation

{ 10 + Agu = f(u) in (0,7) x M,

w(0) = uo, (1.1)

where u : [0,7] x M — C and the nonlinearity f : C — C is real analytic with f(0) = 0. We assume
that up € H¥(M), where:
(A) If there is no further assumption, we set s > d/2, which ensures that H® < L.
(B) Let 1 < d < 3 and assume f to be of polynomial type, particularly f(u) = P'(|u|?)u where:
(B-1) if d = 2 then P is a polynomial function with real coefficients, satisfying P(0) = 0 and

the defocusing assumption P’'(r) ——— +o0;
r—+400

(B-2) if d = 3, then P'(r) = ar+ with a > 0, 8 > 0, corresponding to the cubic nonlinearity.
In any of these cases, we choose s = 1 as the level of regularity.
We will assume from now onward that the observation set w C M is open and non-empty.
Moreover, we will impose that w satisfies the Geometric Control Condition:

Assumption GCC. There exists Ty > 0 such that every geodesic of M traveling at speed 1 meets w
in time ¢ € (0, 7).

Our first main result is the following, corresponding to case (A).

Theorem 1.1. Let d € N and s > d/2. Let u € C°([0,T], H*(M)) be a solution of (1.1). Assume
that the above setting holds and assume moreover that:

(1) w satisfies the GCC,
(2) t € (0,T) — xul(t, ) € H¥(M) is analytic for any cutoff function x € C°(M) whose support
s contained in w.

Then t — u(t,-) is analytic from (0,T) into H*(M).
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The main consequence of this propagation of analyticity in time is the following unique contin-
uation property for solutions of (1.1), notably, in the H!-subcritical cases detailed in (B). First, in
dimension d = 2, for solutions with finite Strichartz norm in the sense of [BGT04, Theorem 2| (see
Section 3.1.1 below for precisions), the structure of the nonlinearity dictates the type of equilibrium
we will obtain.

Theorem 1.2. Let d = 2. Assume that w satisfies the GCC and that f is given as in (B-2). If one
solution u € C([0,T], H'(M)) of (1.1) with finite Strichartz norms satisfies dyu = 0 in (0,T) X w,
then Opu =0 in (0,T) x M and w is an equilibrium point of (1.1), that is, solution of

~Agu+ P (lu)u=0, =M. (1.2)
Moreover, if there exists C' > 0 such that P'(r) > C forr >0, then uw =0 in (0,T) x M.

In dimension d = 3, let (M, g) be any of the following manifolds:
e T3 or the irrational torus R3/(01Z x 027 x 03Z) with 6; € R,
e 53 or 5% x S,
The analysis of the NLS in the subcritical case uses Bourgain spaces, see Section 3.1.1 for precisions.
We get the following unique continuation property.

Theorem 1.3. Let d = 3 and let (M, g) be any of the manifolds described above. Assume that w

satisfies the GCC' and that f is given as in (B-1). Let 1/2 < b <1 and u € X%’b be a solution of
(1.1) which satisfies Oyu =0 in (0,T) x w. Then uw =0 in (0,7) x M.

Remark 1.4. More generally, it is most likely true that the above unique continuation result holds
under the more general bilinear estimates Assumption WP on (M, g). Indeed, although not written
explicetly in the hypotheses of the corresponding results in [LaulOb], the microlocal propagation
machinery applies under such an assumption, which are precisely what we need to treat the low
regularity framework. In particular, any of the aforementioned manifolds with d = 3 satisfy As-
sumption WP.

Our unique continuation result allows us to obtain some results in non-compact domains. For in-
stance, we can obtain a result for (R?, g) equipped with a smooth bounded metric g, see Section 3.6.3
below for precisions.

Proposition 1.5. Let M = R? be equipped with a smooth metric g bounded above and below by

positive constants and whose derivatives are bounded. Let f be as in (B-1). Suppose that there exists

R > 0 such that R? \ B(0,R) C w. Let u € C°([0,T], H*(R?)) be a solution with finite Strichartz
1

norms of

< — pI{]|2 2
{ i0u + Agu = P'(Jul)u  (0,T) x R?, (1.3)

8tu =0 (0, T) X W,
If w satisfies the GCC, then the same conclusions of Theorem 1.2 hold.

1.1.1. Control and stabilization contributions. The control and stabilization of nonlinear Schrodinger
equations has been shown to be a difficult but highly interesting field of research. We mention, for
instance, the works of Rosier and Zhang [RZ09, RZ10] on local control results, and the survey of
Laurent [Laul4] for a thorough summary of results up to 2014. Here, we will focus on global results.

Unique continuation often plays a key role in obtaining (semi)global results of this kind. For
instance, to stabilize and control the wave equation in the subcritical case, Dehman, Lebeau, and
Zuazua [DLZ03] employed a method that combines two main ingredients to obtain the required
observability inequality: the geometric control condition and a unique continuation property. Even

IThat is, it belongs to the space that ensures the wellposedness of the equation in the sense of [BGT04, Section 3,
Remark 5].
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though they worked on a specific geometry, their strategy is quite general and it has been suc-
cessfully applied to study the controllability properties of other systems. Notably, for the control
and stabilization of the Schrodinger equation on compact surfaces, Dehman, Gérard, and Lebeau
[DGLO6] made crucial use of the Strichartz estimates due to Burq, Gérard, and Tzvetkov [BGT04]
which allowed them to develop microlocal propagation methods adapted to the equation. Their
results hold under the following two assumptions on the pair (M, w):

e The observation set w C M satisfies the GCC.
e For every T' > 0, the only solution lying in the space C([0,T], H(M)) to the system

10w+ Agu+ bi(t, x)u+ba(t,x)u=0 (t,z) € (0,T) x M, (UCP)
u=0 (t,z) € (0,T) X w,
where b1 and bs belong to L>([0, T, LP(M)) for some p > 0 large enough, is the trivial one

u = 0.
The second assumption is a unique continuation property with potentials, referred to as UCP in
what follows. Under analogous assumptions, Laurent [LaulOa, LaulOb] extended their analysis in
dimension one and in dimension three by adapting their framework to Bourgain spaces, respectively.
It is worth mentioning that whenever d > 2, in these works the unique continuation property UCP
is an assumption, and it is proved to be compatible with the GCC in some specific geometries.
Here, we obtain the unique continuation property for the nonlinear equation as a consequence of
the GCC, thereby allowing us to drop the unique continuation assumption UCP from their works
and to establish that the GCC is a sufficient condition for stabilization and control of these models.
Notably, we answer to the positive to the open question stated in [DGL06, Remark 3] and by
[Laul0b] in the nonlinear case.
Let (M, g) be any of the following manifolds:

e if d =2 then (M, g) is a compact Riemannian surface,

e T3 or the irrational torus R3/(017Z x 627 x 037) with 6; € R,

° SS or 5'2 x S 1.
Let X; denote the right functional space inherited from the wellposedness framework. Namely, for
d = 2, Xy ensures finite Strichartz norm and for d = 3, A3 corresponds to the Bourgain space
lep’b with b € (1/2,1]. This allows us to handle the subcriticality on each situation. To not over
complicate the statements below, we refer to Section 3.1.1 for more precisions.

In what follows, we will relate w to a cutoff function a € C*°(M,R) such that w = {z €

M | a(x) # 0}.

Theorem 1.6. Let (M, g) be any of the manifolds described above and f be as in (B) according to
the dimension of the manifold. Let w C M satisfy the GCC. Then for every Rg > 0, there exist two
constants C' > 0 and v > 0 such that if ||ug| g1 < Ro then

lu(®) |z < Ce™lugli g, ¢ >0,
holds for every u € Xy solution of the damped system
{ 10+ Agu — a(z)(1 — Ag)ta(x)0u = P'(|[ul*)u  (t,z) € [0,00) x M,
u(0) = uyp.

Theorem 1.6 is a direct combination of [DGL06, Theorem 1] and Theorem 1.2 for d = 2, and
[LaulOb, Theorem 2] and Theorem 1.3 for d = 3. By time reversibility, stabilization and local
control around 0 allows us to obtain the following semiglobal exact controllability result.

Theorem 1.7. Let (M, g) be any of the manifolds described above and f be as in (B) according to
the dimension d of the manifold. Let w C M satisfy the GCC. Then for every Ry > 0, there exist
T >0 and C > 0 such that if for every ug, up € H'(M) with |lug| g < Ro and |Jul| g2 < Ro,
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then there exists a control g € C°([0,T], H'(M)) with ||gll oo jo.17, 12 (M) < C supported in [0, T] xw
such that the unique solution u € Xy C C°([0,T], H*(M)) of the system

0+ Agu= P'(JuP)u+g (t,x) €[0,T] x M,
u(0) = wo,

satisfies u(T,-) = uy.

1.1.2. Literature on unique continuation. As previously described, a main motivation coming from
control theory is to prove a statement of the form:

w satisfies the GCC = Unique continuation property UCP holds.

This is a key step to establish sufficient geometric conditions on the observation zone for the con-
trollability and stabilization results to hold. A classical strategy to prove a unique continuation
property for (1.1) from the observation dyu = 0 in (0,7) X w is to take time derivative z = O,
which leads to establish UCP with low-regularity potentials involving V' = f’(u). Below we re-
view some already known results on unique continuation and explain why this result appears to be
difficult to obtain with the current available techniques.

A first approach to unique continuation might be to employ the general theory of Hormander
[Hor63, Hor85], where the potential V' involving f’(u) has at most the same regularity as uw. The
main feature of Hormander’s theory is that it gives a geometric condition on the hypersurface
S = {¥ = 0}, the pseudoconvexity, sufficient for the local unique continuation across S. Regarding
the regularity of the coefficients, as it is based on Carleman estimates, it is well-suited for potentials
with rough regularity. Obtaining a global unique continuation result then requires the propagation
of local unique continuation across a well-chosen family of hypersurfaces S verifying the pseudo-
convezity assumption. However, this leads to a global geometric assumption which is known to be
stronger than the GCC, see Miller [Mil03]. Furthermore, we point out that Hérmander’s theorem is
empty in our situation the pseudoconvexity assumptions are never satisfied for the Schrédinger op-
erator. However, Lascar and Zuily [L.Z82] showed that Hérmander’s theorem hold in the anisotropic
case by appropriate modification of the symbol classes and Poisson bracket, by taking into account
the anisotropic (or quasi-homogeneous) nature of the Schrodinger operator. We mention the works
[Deh84, Isa93, Tat97] for further results in this direction. As expected, the pseudoconvexity as-
sumption is a strong local geometric condition and it naturally leads to a strong global geometric
assumption on the observation set w in its global version. When it comes to global Carleman esti-
mates with applications to control or inverse problems, we mention [BP02, TX07, MORO08, LaulOb].
In particular, a weak pseudoconvexity condition has been proved to be sufficient in [MORO08] for a
flat metric. Notably, Laurent [LaulOb] employed this pseudoconvexity condition to obtain unique
continuation one some compact manifolds of dimension 3 from some particular observation zones
satisfying the GCC. Nevertheless, this approach forces to check the (weak)pseudoconvexity condi-
tion on each situation we consider, which is mostly impossible in general.

If we want to go beyond the pseudoconvexity assumption, another available unique continuation
result in the above is the John-Holmgren theorem. Although it gives better geometric assumptions
than weak pseudoconvexity, there are some strong drawbacks to this result. On the one hand, it
requires analyticity on all the coefficients of the differential operator under consideration. On the
other hand, it is not stable under C'*° lower order perturbations and a counterexample of Métevier
[Mét93] showed that a nonlinear version of this theorem does not hold in general.

Regarding the propagation of analyticity for nonlinear equations, several results date back to the
1980s and 1990s. Alinhac-Métivier proved in [AM84a, AM84b] that if u is a regular enough solution
of a general nonlinear PDE, the analyticity of u propagates along any hypersurface for which the
real characteristics of the linearized operator cross the hypersurface transversally. Subsequently,
there has been an intense activity to understand what kind of singularities propagate for nonlinear
systems, of which waves particular cases. It was found that the situation is quite complicated since
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microlocal analytic singularities do not remain confined to bicharacteristics as in the linear case,
but can give rise to nonlinear interactions. For more details, see Godin [God86] and Gérard [Gér8g].

In our geometric context, to obtain a global result from local propagation of singularities, the GCC
would force to propagate from hypersurfaces of the form S = {1 = 0} with ¢ (¢, z) = ¢(x), in which
case, the Schodinger operator is never hyperbolic with respect to .S. Thus the propagation results
from [AMB84a, AM84b] do not seem to apply, despite the existence of bicharacteristics transverse to
S.

The problem is better understood in the C'*° or H? setting. The first works of propagation of
singularities for Schrodinger equations go back to Lascar [Las77] and Boutet de Monvel [BAM?75]
where they introduce parabolic wavefront set which propagates along the geodesics at fixed time. To
study propagation and reflection of singularities on Ri, Szeftel [Sze05] develops a paradifferential
calculus well-suited to the nonlinear Schrodinger equation. Global results under the GCC are known
to hold on compact manifolds in the subcritical case via Strichartz estimates and adapted bootstrap
arguments [DGLO6G]. By contrast, adapting such bootstrap arguments in the analytic category
seems to be way more complicated: even for f = 0, local propagation of the analytic wavefront set
for Schrodinger relies on microlocal methods and exhibits delicate behavior near glancing and in
the presence of a boundary due to infinite speed of propagation, see Robbiano—Zuily [RZ99] and
Martinez—Nakamura—Sordoni [MNS10]. It is uncertain if a global propagation of analytic regularity
on manifolds, especially with boundary, can be obtained under the same assumptions using the
analysis for the linear case.

So far, we have seen that for local unique continuation, there is an interplay in between the geo-
metric restrictions and the regularity of the coefficients of the differential operator. In this direction,
in a series of remarkable works by Robbiano [Rob91], Tataru [Tat95, Tat99], Robbiano and Zuily
[RZ98] and Hérmander [Hor92, Hor97], a general unique continuation result that interpolates in be-
tween Holmgren and Hormander’s theorem was obtained. In the particular case of the Schrodinger
operator P = i0; + A, + V, it states that local unique continuation holds assuming regular enough
metric g, that the potential depends analytically in the time variable ¢ only and that the hypersur-
face S = {¥ = 0} is non-characteristic to P. That is, if pa(t, 2, &, &) = — 325, ¢7% (2)&s &z, denotes
the principal symbol of P, where & is the dual variable to ¢ and &, is the dual variable to x;, the
non-characteristic assumption translates into

p2(to, w0, d¥(t0,&0)) # 0 <= (V¥)(t0,&0) # 0.

This hypothesis is optimal: it only excludes the surfaces that are tangent to {¢t = to}, for which
unique continuation is, in general, not verified. We refer to [FLL24, Section 5] for details on the
counterexample. This leads to a global unique continuation result from (0,7") x w for any 7" > 0
and any nonempty open w C M, as long as the potential V' depends analytically in the time
variable ¢; see Theorem 3.20 below. Regarding further results in this direction, T’joén [Tjo00] has
proved a quasi-homogeneous variant of the Tataru-Robbiano-Zuily-Hérmander theorem. Recently,
the analyticity assumption was relaxed to the 2-Gevrey class by Filippas, Laurent and Léautaud
[FLL25] by exploiting the anisotropy of the Schrodinger operator.

Thus, going back to our main motivation, to apply this result in our situation we would need
to prove that V = f’(u) is analytic in time, leading to prove the same for w. From the point of
view of regularity, asking for analyticity is indeed a quite strong hypothesis and a solution u to the
nonlinear Schrédinger equation (1.1), a priori, has no reason to be analytic in time. This observation
underpins the importance of our result Theorem 1.1, which in particular allows us to obtain unique
continuation for analytic nonlinearities and under the sole GCC as geometric condition.



UNIQUE CONTINUATION AND STABILIZATION FOR NLS UNDER THE GCC 7

1.2. Abstract frequency-based reconstruction. Let 7" > 0. In this section, we consider the
following nonlinear observability system

du=Au+flu+bi)+bh2 in[0, T,
Cu(t) =0 te0,7T],

on a suitable real Hilbert space X, where A is a skew-adjoint operator on X, f is a mapping from X
into itself, h; and ho are some applications from [0, 7] into X, and C is a linear bounded observation
operator in X.

In what follows, we will make several assumptions that will be enforced towards our main result.
The first assumption dictates the class of PDEs we will be working with.

(1.4)

Assumption 1. A is a skew-adjoint operator with domain D(A) on a real separable Hilbert space
X, so that A*A = —A? has a compact resolvent.

We will now list some consequences of such an assumption. That A*A = —A? is non-negative

self-adjoint, allows us to define the Hilbert space X = D((A*A)?/?) < X for any o € R.

By the spectral theorem, and since A*A has a compact resolvent, the spectrum of A*A is real
and discrete, allowing us to construct an orthonormal basis of eigenvectors of A*A in X, denoted by
(ej)jen and associated to the nonnegative eigenvalues (\;) en (ranged increasingly) with A; — +o00
as j — +o0o. We introduce the high-frequency projectors Q,, on the space span{e;};>, and then
we set the low-frequency projection P, = I — Q,,. Note that A commutes with P,, and AP, is a
bounded operator of X7 into itself with norm less than (\,).

The parameter o will be fixed from now on. We will use the notation P, X7 or Q,X? for that
related image of the Hilbert space endowed with the topology of X°.

Let us introduce some notation. For a given real Banach space Y, we denote the ball centered
at 0 of radius M by

By (Y):={yeY [ |ylly <M}
For a given non-empty interval I C R, we denote the ball of radius R of C°(I1,Y) by
Br(Y) ={y € C°(L,Y) | |yllcor,y) < R},

equipped with the L*°([0,T],Y )-norm. Building upon this notation, given a non-empty set A C Y
we introduce

BL(Y, A) = {y € BLY) | y(t) € A for every t € [0,T]}.
Furthermore, we introduce the canonical complexification Y, defined as the set of elements y1 +iys,
yj € Y, see [BST1b, Section 2]. We then introduce following notation for the cylinder on Y,

Bars(Y) ={y € Yc | [R(y)lly <M and [|S(y)[ly <4},
and similarly on CY(I, Y¢),

Bps(Y) = {z € C°(L,Yc) | vt € I, [|R(2(t))lly <R, [IS(2(t))|ly <6}

The latter space is equipped with the natural L*°([0,7T], Y¢)-norm.
We will make the following assumption on the nonlinearity.

Assumption 2. The nonlinear map f : X° — X belongs to C?(X?) and is bounded on the bounded
sets of X?. Moreover, its differential map Df : z € X7 — Df(z) € £(X?) is bounded and Lipschitz-
continuous on the ball B4g,(X7), for some Ry > 0.

Furthermore, there exists § > 0 so that f can be extended holomorphically from Bsp, 25(X&) into
X¢. This means that f is holomorphic in the interior of this ball and continuous up to the boundary.
Moreover, for some L > 0, the following inequalities hold for any z, 2’ € Byp, 25(X7):

If(2)lxg < Ly [If(2) = f(z")lxg < Lllz = #'llxg and [|Df(2) — Df(2')ll(xg) < Lllz — 2'lIxg- (1.5)
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We make an observability assumption for solutions of the linear system
ow = (A+ Q,Df(v))w, te(0,T],
w(0) = wy € Q,X7,

which is uniform with respect to the parameter n and the input v € C°([0,T], X). Denote by S, (v)
the evolution operator associated to (1.6) (see Theorem 2.1 below for a more precise definition).

(1.6)

Assumption 3. Let Ry > 0, T > 0 and ng € N be given and let V be a non-empty subset of
Bgﬁ:] (X7?). Let C € L(X7?) be an observation operator. We assume that ¢ — S, (v)(¢,0) is
observable on [0,7] for any v € V and n > ng. Moreover, there exists a constant €55 > 0 such
that, for any n > ng, for all v € V

T
lwoll%e < e:obs/ 1CS (0) (2, 0)wo|2odt, Vg € Ou X7 (1.7)

The main result is the following.

Theorem 1.8. Let T >0, Ry >0, Ry >0 and ng € N. Let T* > T. Let A be a compact subset of
X and let IC be a compact subset ofB 0.1 ](X") Let us further assume that both A and KC are stable

under the projector P,. Let by € B}gOT ](X",.A) NK and by € BE%T*](X“,A) be such that they both
admit some extension CO([0,T*] + i[—pu, u], X&), respectively, with > 0, so that the application

(0T +iCnn — X
z — bi(z)

is holomorphic. We assume the same for ha. We assume moreover that Rbi(z) € Br,(X7) for any
z € [0, 7] +i[=p, p].

Assume that Assumptions 1, 2 (with Ry) and 3 (with Ry, T', ng and V = B[OT (X7, A+ A)) hold.
Then, any solution u € IC C C’O([O,T*], X) satisfying u(t) € A fort e [O,T*] and

{ Ou = Au+ f(u + b1) + b2 on [0,7™], (1.8)
Cu(t) =0 for t € [0,T7], .

is real analytic in t in (0,T%) with value in X°.

This result is a next natural step of the technique introduced by Laurent and the author in
[L1.24], which can be seen as a sort of finite-time adaptation of an abstract result due to Hale and
Raugel [HRO03] in the context of dynamical systems. Here, we relax the compactness assumption on
f by introducing the uniform high-frequency observability Assumption 3. This assumption permits
us to face the lack of compactness of the nonlinearity by considering the linearization around
low frequencies and translating a big part of the analysis into this linear problem. In turn, the
compactness hypotheses are now put onto the solution itself.

We thus follow the same strategy of proof as in [LLL.24], but we perform a finer analysis regarding
the behaviour of the nonlinearity and the linearized systems involved. In practice, this allow us to
consider more general analytic nonlinearities whereas the compactness properties will depend on
the equation under study, mostly obtained through smoothing effects or propagation of regularity.

1.3. Outline of the article. Section 2 is devoted to the proof of the abstract Theorem 1.8. Sec-
tion 3 contains the applications to the nonlinear Schrodinger equation. It contains the verification
that the abstract Theorem 1.8 can be applied in the settings aforementioned for a sufficiently high
regularity index o. It also contains some propagation of regularity arguments that allow to reach
this regularity o starting from the energy space. In Section A, we gathered some analysis results,
including complex analysis in Banach spaces. In Section B we recall some basic facts about pseu-
dodifferential operators.
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Notation. Given Banach spaces X and Y, we denote by £(X,Y’) the Banach space of all bounded
linear operators from X to Y. Sometimes to clarify the difference in between real and complex
structures, if X and Y are complex Banach spaces, we will denote by L¢(X,Y) the Banach space
of bounded linear operators which are C-linear with the inherited complex structure. Given two
quantities A and B, we will sometimes write A < B to say that there exists a constant C' > 0,
independent of A and B but possibly depending on other parameters, such that A < CB.

1.4. Acknowledgment. I would like to warmly thank Camille Laurent for carefully reading an
earlier version of this article and suggesting countless improvements, as well as for the helpful
discussions, encouragement, and patient guidance.

This project has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sktodowska-Curie grant agreement No 945332.

2. ABSTRACT ANALYTIC RECONSTRUCTION

2.1. Sketch of the strategy. The aim of this section is to prove Theorem 1.8. For the reader’s con-
venience, we will briefly outline its proof, based on a generalized Galerkin decomposition introduced
in Hale-Raugel [HR03] and Laurent and the author [LL24].

In this section we will employ the notations introduced in Section 1.2. Let 7" > 0 and ¢ > 0 be
fixed parameters from now onward, unless specified otherwise. Let u = u(t) be a mild solution of
(1.8) in C°([0,T], X?) and suppose h; = 0, ha = 0 for simplicity. Recall that, from Assumption 1,
we have the low and high-frequency projections P,, and Q,, = I — P,, which allows us to consider
the splitting

u(t) = Ppu(t) + Qnu(t) = v(t) + w(t),
where (v, w) solves the following system

ow(t) = Av(t) + Puf(v + w),
Bw(t) = Awlt) + Quf(v -+ w),
Cuw(t) = —Cuo(t).

By Duhamel’s formula, the high-frequency component w can be written as

w(t) = e4w(0) +/ eAlt=s) Qnf(v(s) + w(s))ds.
0

The observation condition Cw = —Cwv suggests that given v, we can reconstruct w by solving the
corresponding nonlinear observability system. Since here we aim to relax compactness assumptions
on the nonlinearity §, we cannot directly setup a fixed point argument as in [L1.24]. To face this
lack of compactness on f, we will consider a linearization of the component w along the component
v of the solution. Let us introduce H : X7 x X7 — X7 defined by

1
H(v,w) == /0 [Df(v 4+ Tw) — Df(v)]wdr.

Formally, by writing f(v 4+ w) = Df(v)w + f(v) + H(w, v), we are led to study the nonlinear observ-
ability problem at high-frequency

{ drw(t) = (A + QuDJ(v))w + Qn (f(v) + H(v, w)),
Cu(t) = —Cu(t).

Due to the observability condition Cw = —Cw, we can regard the low-frequency part as an input
for the high-frequency system. In order to set up the high-frequency reconstruction, the first part of
Assumption 2 will allow us to justify that Duhamel’s formula holds, including the potential Q,, Df(v)
in the linear part of the equation. Then, further enforcing the uniform high-frequency observability
Assumption 3, we will argue that a linear reconstruction is possible. If we momentarily forget
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about the source term, this says that we can reconstruct w(0) in terms of the observation of w,

which is Cw = —Cuw. This linearization will then allow us to tackle the nonlinear observability

problem by means of an adequate fixed point argument at high-frequency for inputs belonging to

a compact set. By using Duhamel’s formula, this will yield a reconstruction operator R, defined in

some appropriate spaces, such that Q,u = R(Ppu) for a large enough frequency threshold n € N.
Then, the solution u can be represented as u(t) = v(t) + R(v)(t), where v solves

0w = Av + Ppf(v + R(v)). (2.1)

To demonstrate that ¢ € (0,7") — u(t) € X7 is analytic, the second part of Assumption 2, namely,
that § admits a holomorphic extension, and a compactness assumption on u are essential. This
will be achieved by establishing that ¢ — v(¢) and v — R(v) are both analytic maps. If instead,
we consider (2.1) as a differential equation on the space Banach space C°([0,T],P,X?), classical
ODEs theory imply that ¢ — v() is as smooth as §, and therefore analytic. The uniform contraction
principle further ensures that R depends analytically on v, from which the result follows.

In what follows, we develop these ideas towards the proof of the main theorem. Although most
intermediate results will treat v as a generic input, in the end we will consider a low-frequency input
plus a parameter which is not necessarily low-frequency. For the sake of convenience, we keep this
notation.

2.2. Preliminaries. Let us make the following intermediary assumption on the nonlinearity.

Assumption 2a. The nonlinear map f : X° — X7 belongs to C?(X9) and is bounded on the
bounded sets of X?. Moreover, its differential map Df: x € X7 — Df(z) € £(X?) is bounded and
Lipschitz-continuous on the ball B4g,(X7), for some Ry > 0.

Let s € [0,T) and n € N. For v € C°([s,T], X?) given, we consider the linear equation
{ ow = (A+ Q,Df(v))w, te (s,T],

w(s) = ws.

(2.2)

Our first task is to justify that, for any w(s) € Q, X7, (2.2) has a unique mild solution characterized
by Duhamel’s formula

w(t) = e~y + / - Q. Df(v(7))w(r)dr. (2.3)

S

This will lead us to introduce a map Sy, : v — S, (v), where S, (v) is the evolution operator, in the
sense of [Paz83, Chapter 5, Definition 5.3|, characterized by formula (2.3) above as the unique mild
solution of (2.2) with S, (v)(-, s)ws = w(-). We make this precise in the following lemma.

Lemma 2.1. Let Ry > 0 and T > 0. Let n € N. Under Assumptions 1 and 2a (with Ry), for each
v e C%[s,T],X7), the map (t,s) — S,(v)(t,s) is a linear evolution operator for 0 < s <t < T and
Duhamel’s formula (2.3) holds. Moreover, for s € [0,T), the map

Sn v € BEH(X7) = 8,(0)(,8) € £(Qa X7, C[s,T], Qu X)), (2.4)

is uniformly bounded and Lipschitz-continuous of constant C > 0 (independent of n € N): for any
vy, U3 € Bg}’g] (X7) it holds

[S(v1)(+,8) = S(v2) (s 8)ll 2@, x7,00(s, 11,00 x7)) < Cllv1 — V2|l co (5,77, x7)- (2.5)

Proof. Let F be the map given by

(Fw)(t) = e, + / t =149, Di(v(r))w(r)dr, t € [s,T). (2.6)
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From Assumption 2a and v € C%([s, T], X?), the map F is well defined from C°([s,T], Q,,X?) into
itself. Let M be the uniform bound of the map v — Df(v) on Byr,(X7). We now claim that for
every t € [s,T] it holds

CM(t — s))k ~
((k!))Hw — Wl co((s,1,0,x7) (2.7)

| 75w — F*® co((s 1,0, x0) <
for each £ € N. From the Duhamel formula, we get that
[ Fw — Fllco(s,,0nx7) < CM(t = 8)||w — wlco(s,4,0,x7)-
Assume that (2.7) is true for some k € N. Then, by writing F**lw — F*lw = F(Frw) — F(Frw),
using Duhamel’s formula (2.6) again

t
|F*w — FE0] o 5,0,00x0) < CM/ 1F w — F*ll o570, x0)d7

CM k+1 t ~
< (k') / (1= 8)*|lw — @ cos.17,0, xoydT

(CM(t — s))k+! B
S gz v Ollevgsenxe):

The claim follows by induction.
Choosing k € N such that (CM(kﬂ < 1, by a generalization of the contraction principle, F
admits a unique fixed point w € C°([s, T], Q,, X ) which satisfies (2.3). A classical Gronwall’s lemma
argument (used below) shows uniqueness of the solutions. This way, we introduce the map S, as
precised in (2.4) which maps each v € C%([s, T], X?) into the evolution operator S, (v) characterized
by (2.3).
Let ws € Q,X?. By Duhamel’s formula (2.3), for s <t < T we have the estimate

t
lw(®)lxe < 1“4 £ oxe) lwsllx- +/ ™D 2 (x) QD (0 (T) | £ (xo) lw(T) || x=dT

and so Gronwall’s lemma implies

t
[[5n (0) (£, s)wsllxe < Cllws]|xo exp (C/ ||Df(v(7))||c(xo)d7> :

By Assumption 2a, there exists M = M (Rg) > 0 so that supsc(o 71l|Df(v(s)) [l c(xo) < M, uniformly
inve B,[(};{? (X7). We then obtain

150 (0) (-, $)ws | co((s,17,0,x7) < C exp(CTM)||ws | x7,

uniformly for v € Bgi%f] (X7). The linearity of the map ws + Sp(v)(-, s)ws implies that (2.4) is

bounded. ‘
Let vy, v2 € B:[,)S]’;OF] (X7) and set w'(t) = S(vi,t,s)ws for ws € Q, X7 for i = 1,2. In the same
fashion as before, we employ Duhamel’s formula to write

w!(t) — w?(t) = (S(v1)(t, 5) — S(va2)(t, 5))ws

_ / e="4Q, [Df(v1 (7)) — Df(va(r))Jw?(r)dr

s

+ / eNAQ. Df(v1 (7)) (w' (1) — w?(7))dr.
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Thus, by taking X?-norm and using the Lipschitz continuity of Df given by Assumption 2a, we get

[ (£) — w?(#) | xo < C/ (IDf (w1 (7)) = Di(va(7))ll x| (7) || xodit
+ 1D (w1 (1))l| £y 1w (1) = w?(7) | x7 ) dr

< CO(T — s)M||ws|| xe [|v1 — valloos,),x7)

t
+C/ ID§ (1 (M)l ey ' (7) = w?(7) || xo dr
S
Gronwall’s inequality implies that for any ws € Q,, X?

1(S(01)(t, ) = S(v2) (¢, 8))wsllxe < C(T — 8)Me“ T Mg o [[or = vall o (s 11, x7)-

Using that the previous bound is independent of t € [s,T], we deduce estimate (2.5) with C
depending on M, Ry and T — s. O

Remark 2.2. The previous lemma shows that for any 7> s > 0 and v € B[S o o (X7), (2.2) admits a
unique mild solution w := S,(v)(-, s)ws € C°([s, T], Q, X7).

Our task now is to justify that Duhamel’s formula holds for the equation

{ 00 = (4+ DO + uhlt, ¢ (5T) 2.8

w(s) = ws,
when h € L([s,T], X?) is an appropriate source term and ws € Q,, X°.

Remark 2.3. From now on, every time we refer to equations of the form (2.8), we will understand
them in the sense of mild solutions (i.e. whose solutions are defined through Duhamel’s formula).
Indeed, since v € C%([s,T], X?), even for regular data ws, € D(A) N Q,X° and right-hand side
h € C%[s,T], X?), we cannot ensure that (2.8) admits a classical solution.

Lemma 2.4. Let n € N. Let v € C%[s,T),X%). If ws € ©,X° and h € L*([s,T],X?), then
w e C%[s,T), @, X7) is a mild solution of (2.8) if and only if

w(t) = Sp(v)(t, s)ws +/ Sp(v)(t, 7)Qnh(T)dT, t € [s,T]. (2.9)

Moreover, if v € B[O o o (X7), there exists C > 0 (independent of n) such that
lw(®)llco sy, x7) < C(llwsllxe + [1QnhllLi(fs,7),x7))- (2.10)

Proof. Let w be given by (2.9). We will develop the right-hand side of evolutionary formula (2.9)
to arrive to the classical Duhamel formulation of (2.8), proving that it is indeed the mild solution
we are looking for.

By definition, the evolution operator S(v)(¢, s) is a mild solution of the the homogeneous problem

d

S0(1) = (A+ QuDI((1)) W (),
U(s)=1,

that is, it is characterized by

Sp(v)(t,s) = =) +/6(tT)AQan(U(T))Sn(U)(T,S)dT (2.11)

as a linear operator in £(X7). We can thus write

w(t) = ey, + / eAQ. Df(v(7))Sn (v) (T, 8)wsdr + / S (v)(t, 7)Quh(T)dr.  (2.12)
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On the one hand, focusing on the forcing term above, by using formula (2.11) we get

/ S0 (0)(1,7)Qub(r)dr = / A ()

—i—/s /T e=MAQ. Df(v(1)) S (v) (0, 7) Qnh(7)dndr.

On the other hand, by using once again that w is of the form (2.9), we see that

/ e=14Q, D(w(r))w(r)dr = / "4 Q, Df(v(r)) S (v) (7, )wsd

5 v =140, Di(o(r)) ( / ' sn<v><7,5>gnh<£>d§> dr.

Up to relabeling variables, by Fubini’s theorem we see that the double integrals in the two last
identities are equal. By putting them together we obtain

/ =DAQ. Di(u(7))Sn(v) (7, s)wsds + / S0 (0)(t, 7) Ouh(7)dr

t t
= [ Qi+ [ A (rdr

Plugging the above identity into (2.12), we obtain that
t
w(t) = e =D, + / et=DA(Q, Df(v())w(T) + Quh(r))dr,

proving that w is a mild solution of (2.8).
Conversely, let w be a mild solution of (2.8) and let w be given by

B(t) = S (0)(t, 5)ws + / S0 (0)(t, ) Quh()dr, t € [5,T).

By the above argument, we see that w is a mild solution of (2.8) with initial data ws and source
term h. Thus w = w by uniqueness of mild solutions, proving that both formulations are equivalent.

Classically, estimate (2.10) follows from Duhamel’s formula (2.9) and the uniform bound of S,
given by Theorem 2.1. O

Remark 2.5. After Theorem 2.1, observe that the constant C' in (2.10) does not depend on n € N.

Building up on Assumption 2a, we will further assume that there exists § > 0 so that f can be
extended holomorphically to B, R0725<XE) into XZ. This means that f is holomorphic in the interior
of this ball and continuous up to the boundary. Moreover, for some L > 0, the following inequalities
hold for any z, 2’ € Byp, 25(X?):

If(2)llxg < L, [If(z) = §(z)llxg < Lz = #llxg and ||Df(z) — Df()llz(xg) < Lllz = 2/l xg-

This is precisely Assumption 2.
We have the following lemma for the validity of a holomorphic extension of the map v — S, (v).

Lemma 2.6. Let T' > 0 and Ry > 0. Under Assumptions 1 and 2 (with Ry), there exists 6y > 0
such that for every n € N the map S, defined by (2.4) can be holomorphically extended as

SS v e By (X7) — Su(v) € Lo(QnXE, CO([s, T, Qn X2)). (2.13)
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Furthermore, such extension is bounded and Lipschitz-continuous of constant C' > 0 (independent
of n € N): for any vy, vy € B:[’;?%?éo (X7)

155 (01) (s 8) = S (v2) (- 8) |l £(@uxg.co(s11,2uxg)) < Cllor = v2llcogsry x2): (2.14)

Proof. First, we show the existence of the complex extension as specified in (2.13) and then we will
prove that this map is indeed holomorphic.

Step 1. Complex extension. The first step is to prove that Duhamel’s formula still makes sense in
the complex setting, which will give us the desired complex extension.

First of all, for each ¢ € [s,T] the semigroup map e as well as the projector Q,, are linear
maps in £(X7), so they admit holomorphic extensions as linear maps in the complexification XZ,
namely, these extensions belong to Lc(Xg&); see [BS71b, Theorem 3]. Secondly, from Assumption
2, f admits a holomorphic extension from Byp, 25(XZ) into XZ and thus its complex differential Df,
defined as

) 1
Di(z)k := of(x; k) = (Cgsrgo . (f(z + sk) — §(z)).
maps Byr, 25(X&) into Lc(XE). We denote all of these extensions by the same letter as its non-
complexified versions.
[s,T]

Observe that whenever dp < 4, for any v € Byp s (X7), the linear map QpDf(v) is well-defined
and belongs to L¢(9, X2, C%([s, T], XZ)). We thus have a well-defined map

SE v e Bl (X7) s SE(0) (-, 5) € Lo(QuXE, C([s, T), uXE)) (2.15)

characterized by

t
SE()(t, s)ws = e, +/ e =149, Di(v(7))SS(v) (7, s)wsdr. (2.16)
S

Indeed, by the discussion at the beginning, the right-hand side above makes sense and moreover,
Assumption 2 allows us to perform a similar fixed-point argument as in Theorem 2.1, from which
we get the Duhamel’s formula characterization and the regularity claim. Furthermore, the same
Gronwall-type argument allows us to establish the Lipschitz-continuity (2.14) and boundedness of
ST uniform in n € N. This map is characterized by the corresponding Duhamel’s formula (2.16)
and it give us the mapping properties as stated in (2.15), that is, S (v) is C-linear for each fixed v.
Therefore it provides us with the desired complex extension, which we will denote by just S,, from
now on.

Step 2. Holomorphicity of the extension. We now prove that the complex extension S, defined
above is holomorphic by showing that it is complex differentiable; see Theorem A8. Let us consider
te[s,T)— &i(t) :=&(t; q) € Q,XE, mild solution of

{ﬂﬂﬂ:m+gdmwmew,te@ﬂ7

dt
gq(s) =&,
with & € ©,XZ and g € C°([s, T, XZ). By the previous discussion, we have £ € C°([s, T], 9, XZ)
and it is characterized by

ﬁ@zS@wﬁ&zﬂﬁ+/eWWQJW%Wﬁm&.

We claim that the differential of S at v € Int B:[f]lz:g 5, (X7) is
dS,(v) : h € C%[s, T], X&) — dS,(v)h € L(Qn,XE,C%([s,T], 2 XE)),
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where (dS,(v)h)(-)& == z(-; h) € C°([0,T), Q,,X2) is characterized by

z(t; h) =/ Sn(v)(t,7) QuD?*(v(7))[h(7), € (7))dr

with v € C%([s,T], 9, X2) as above with & fixed and D?f(z) : XZ x X2 — XZ being the bilinear
map defined as

D?*§(z)[h, k] := lim f(Df(ersh)k: Df(z)k).

C3s5s—0 s
To this end, let us consider the map

L [5,T] > D) = (0 + h) — £(t0) — (k) € QuXE.
Using Duhamel’s formula and some algebraic manipulation, we see that D is a mild solution of
dD(t
{ ) — (44 QuDIW)D(®) + Qu(DIw + ) — DIw))E™" — QuD(w)h. "]
D(s) =0
that is, D is characterized by

t
= / Sn(©)(t,7)Qul(DF(v + h) = Df(v) = D*j(v))[h, €] + D*}(w)[h, €+" — £"]ar,
for t € [s,T] and & € Q,XZ. Thus, we have the bound

1Dlloosmy,x2) < C(I(DF(v + k) = Di(v) — D*(0))[h, €Ml o s, 17, x2)
+ [|1D?(0) [, € = €1l co (s, 11, x2))
with C = C(Ry,T — s,0) > 0. Fix v € Int(Bi[;S}’%:géo(X")) and £ > 0 so that Beos 1),xg))(v,€) C

Byls, (X)) For all h € C([s, T, X&) with ||hlco(sz),xg) < ¢/4 and t € [5,T], we have v(t) +
h(t) € Br,s,(X7) (recall 6y < §). Being f holomorphic, using a Taylor expansion (see Theorem A9)
along with Cauchy estimates (see Theorem A11), we get the following bound, uniform in ¢t € [s, T,

[F(v(t) + (t)) — §(v(t)) — Df(v(t)h(t) | x2
4L\|h(t)||§((g - 4LHhHC’0(sT] X8 8LI|AlZ0 ([s,T),X2)
Tl =2|h() ] xg) T U =2|hllcosmxg)) T e '

The differential of § can be easily extended from C%([s,T],XZ) into C°([s,T], XZ) and remains
C-linear. Since, the previous estimate is uniform in ¢ € [s,T], we can write

BLIIAIIo 15,7, xg)
[f(v + ) = f(v) = Df(v)hllcos.ry,x2) < 7 : (2.18)

(2.17)

This shows that f is a holomorphic map from C([s, T, X2) into itself. In particular, Df : C°([s, T], XZ) —

Lc(CO([s,T), XZ)) is holomorphic as well and therefore, with a similar reasoning as above, we arrive
to

8L
| Df(v + h) — Df(v) — DQf(U)hHE(CO([s,T],Xg)) < TQHh”QcO([S,T},Xg)-

On the other hand, note that D?f is well-defined and continuous as a map from C?([s, T, X2) into”
LA(CO([s,T), XZ),C%[s,T], XZ)). Therefore, by the Lispchitz-continuity of v + S,(v), we get

ID%(0)[h, € — €l co (s 11.x2) < 1D*7(0) | 2 (coqis,ry xzp 1 Pllcoqs a1, xe) 1€ = €1l o1, x2)

2ck (E, F) is defined as the space of k-linear forms from E X ... x E into F.
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< Olhllcosaxa)lE™ = €1l cianxz.coqs . xay Isll xg
< CllhlEoggs,m,x2) 165l xe -

Here, C' > 0 is a constant given by the local boundedness of D?f around v (see [Muj86, Proposition
8.6]). Gathering the above inequalities, we obtain, uniformly in a ball centered at v of radius ¢/4,

2
Dllcosryxg) < Clibllcosm,xa)lléslxe-
In terms of the operator S,,, the previous inequality reads as

190 (v + 7) (-, 0)€s = Su(v)(+,0)&s = (dSn(vV)R)&sllco(is,m1,00x2) < CllhIE0 (s, 17.x2) 1651 x2-
By linearity of S, (v) and dS,,(v)h, we finally get

1S (v + 7)(-,0) = 8u(v)(+,0) = dSn(v)hll £o(uxz,c0(1s, 71,20 x2)) < CllIG0 (577, x2)-

The latter inequality shows that S is complex differentiable, hence holomorphic. O

2.3. High-frequency linear observability problem. From now on, we assume Assumption 3
holds: for Ry > 0 and ng € N given, for an observation operator C € £(X?) and for some non-
empty set V C Bg}’%? (X7), there exists a constant €, > 0 such that for any n > ng and all v € V,

it holds

T
woll%r < €2, /0 1CS(0) (¢, 0)wo|2adt,  Vavp € QuX7. (2.19)

For all n > ng and for any v € Bg}gg] (X9),let Onp € L(Q, X7, L%([0,T], X)), defined by O,,.,, :=
CS,(v)(+,0), be the observation operator of linear solutions at high-frequency with potential. In-
deed, from Theorem 2.1, we know that for wy € Q, X7, the map t € [0,T] — Sy, (v)(¢,0)wy € Q, X7
is continuous and in particular CS,,(v)(-,0)wo belongs to L*([0, 7], X7).

From Assumption 3, observability inequality (2.19) implies that for any v € V, the operator O,, ,
is injective and it has closed range. This allows us to define II,, , as the orthogonal projection® onto
its image Im(0,,,) C L?([0,T], X?). From now on, we equip YV, := Im(O,,,) with the induced
topology from L2([0,T], X?) which makes it a Banach space. By the observability inequality (2.19),
we know that O, : @,X7 — Yy, is a bijection, ensuring that ), , is closed and that a bounded
reconstruction operator (9;7% tVnw — QnX7 exists.

By applying the observability inequality (2.19), we get for any y € Y, C L*([0,T], X),

1054yl xe < ConslOnwOn iyl 2011, x7) = Cobsllyll L2((0.77,57) (2.20)

and this estimate is uniform in v € V and n > ng. In what follows, we give two main consequences
of Assumption 3, which will be key to set up the reconstruction formula and study its regularity
with respect to the parameter v. First, we introduce the Gramian-dependent operator

G : By (XO) —  L£(QnX7)
v — O, Onp.

Note that such operator is intrinsically related to the uniform observability Assumption 3, since

T
/ HCSn(v)wo|]§(adt = <O:7v0n,vw07wO>X‘77 Ywg € @, X7,
0

3 According to the natural scalar product in L2([0,T], X).
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where the adjoint is taken with respect to the real structure of X?. Hence, under Assumption 3,
we can introduce the operator

C(QnX")
(On

nv)_l

Gh:veByplxe) —
v

The next lemma establishes some regularity properties of this map.

Lemma 2.7. LetT > 0, Ry > 0, ng € N and V C B[O T](X"). Under Assumptions 1, 2a (with
Ry) and 3 (with T, Ry, ng and V), for any n > ng, the map GV C B:[g’%? (X7) = L(QnX7) is

well-defined, bounded uniformly by Cgbs and Lipschitz-continuous with
1G] (v1) = G (v2)ll (0, x7) < Lllor = v2ll oo,y x7)

where the Lipschitz constant L is independent of n > ng. Moreover, if Assumption 2 is enforced
and Vi C V is a compact set in C([0,T), X7), there exists n > 0 such that for any n > ng, the

map Q;L restricted to Vi admits a holomorphic extension as
0,T
G+ Vi +BOTHX7) — Lo(2,X8)
which is Lipschitz-continuous and uniformly bounded with respect to n > ng.

Proof. To slightly simplify notation, let us introduce
Y = £(0,X°, L*([0,T], X)) and Y = L(L*([0,T], X°), 0, X?),

where both of them are endowed with the natural operator norm. We also introduce the complexified
versions Yc and Yg, obtained by replacing X by XZ into the above spaces, respectively, and
considering the corresponding space of C-linear bounded operators.

Step 1. Boundedness. Let v € V. Since O, , is a bounded linear operator from Q,X? into
L2([0,T],X7), s0is O} , from L*([0,T], X) into Q, X7; see [Brell, Remark 16]. Under Assumption
3, observability inequality (2.19) implies that O}, ,On, € £(Q,X?7) is a bijection with bounded
inverse, that is, ((9;;7”(9”,1,)_1 € L(Q,X7). We then have a well-defined map

Gl :ve VBRI X) = 3G, (v) = (0 ,0n0) ! € L(QnX7),

where J : Isom(Q,X?) — Isom(Q,X?) is the map J(L) = L' € Isom(Q,X?), with Isom(Q, X)
being the (open) subset of invertible operators in £(Q,, X?).

The boundedness of G}, follows directly from Assumption 3. Indeed, as a consequence of the
observability inequality (2.19) we can write

CQ

obs

lwoll%- < /Ilonvwo!Xadt (O, 0n,vw0, wo) xo < [|Op , Onpwol| x= |[woll x-,

from which we obtain
1O ,Onw) lz(nxey = sup{[|O; ,Onvwollg xo | wo € QuX7, |lwoll =1} < €5, (2:21)

and the latter constant is uniform on v € V and n > ny.
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Step 2. Lipschitz-continuity. To verify the Lipschitz continuity of Q,T@, we will show that it can be
expressed as the composition of several Lipschitz-continuous maps.
In view of Theorem 2.1, by composition with linear maps, we have that both maps

v e BL N (X7) s Oy = CSa(v) €Y,

ve B I(X7) s 0, = (CS, () € Y
are Lipschitz-continuous. Let us consider the following (nonlinear) operators:

e Let My, : v = (O, Onp) be defined from Bg%or] (X?) into Y x Y. By Theorem 2.1 and
composition of linear operators, we see that 91 is bounded and Lipschitz-continuous map in
the C°([0, T], X?)-norm, uniformly in n € N.

e The bilinear continuous form B : (S,T) — ST, as a map from Y x Y into £(Q,X?). By
direct computation, it is Lipschitz-continuous on bounded sets of Y x Y, with constant
depending on the size of the set.

e Let J be the map J(L) = L' introduced above. Note that for any Ly, Ls € Isom(Q, X?)
we can write L' — L7* = L7Y(L1 — Ly)Ly". This means that J is Lipschitz-continuous on
subsets of Isom(Q,,X?) on which linear maps have bounded inverse.

Let V,, = BN, (V), which is a non-empty subset of Isom(Q,,X7). Note that any operator
in V), is of the form O;,UO"’U with v € V and whose inverse is uniformly bounded with
respect to v and n > ng by ngs, see (2.21). Therefore, J is Lipschitz-continuous in V,, with
the £(Q,X7)-topology with constant independent of v € V and n > ny.

Hence, we can write G, = I8, and it is well-defined from V C B:[S%? (X7) into Isom(Q,X?) C

£(9,X°) for n > ng. Moreover, by composition, it is Lipschitz-continuous in the C°([0,77], X?)
topology, uniformly in n > nyg.

Step 3. Holomorphic extension. From Theorem 2.6, we have a well-defined holomorphic extension
T o
ve BGI (X7) — Op = CSu(v) € Y,

where we dropped the upper script of S;g for simplicity and we keep denoting by C the complexifi-
cation of the linear observability map on Lc(Q,X¢). Also, by Theorem A18 we have a well-defined
holomorphic extension of the adjoint map
0,T - >
ve Bl (X9) s Adj(Ony) € Yo,
where Kd/J denotes the C-linear holomorphic extension of the map Adj which sends a linear bounded
operator into its adjoint. Let us then consider the following maps:

o Let N, :v+— (&de(On,v), Onﬂ,) be defined from Bz[ggdo (X7) into 37@ x Y¢. By the previous
arguments, we see that 91 is bounded and holomorphic.
e The bilinear continuous form B : (S,T) — ST, as a map from Y¢ x Y¢ into Lc(Q,XE). In
particular, it is holomorphic, given that it is linear on each component Theorem A13.
e Let J: Isom(Q,XZ) — Isom(Q,, XZ) be the map J(L) = L~! € Isom(Q, XZ).
Since G, := BIM,, by composition of holomorphic maps, we can consider the its holomorphic
extension, which we keep denoting by the same letter,

G v € Byl (X7) v Adj(Or0)On € L&(QnXE).

Let us fix € > 0 such that 5@3175 < % By continuity of the extension, for each vy € Vi, there exists

0 > 0 such that for v € vg + Bgo(’;ﬂ (X7) we have [|Gn(v) — Gn(vo)|g(xg) < € and, by a Neumann

series argument, G, (v)~! is well-defined and belongs to Lc(Q,XZ). Moreover, by Theorem A16
the extended map J : Isom(XZ) — Isom(X¢) is holomorphic on any of these e-neighborhoods
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around G(vg) with vg € Vi. Since these neighborhoods form an open cover of the compact set
Vi +1i0 C Bg}%? 5, (X7), there exists > 0 such that G' admits a holomorphic extension as

Gl v e Vi +BET(X) 5 3G, (v) € Lo(QnXE).

Indeed, at each v € Vi + B%%T] (X7) we can find a suitable neighborhood on which the Neumann

series expansion for G is valid and thus the conclusion follows by composition of the holomorphic
maps J and G,,. Moreover, by a Neumann series argument, for each v € Vg + B,[,%T] (X7),

1
1GE ()]l £e(x2) <
T 16 o)l xe 1 Gn (v) — Gn(vo)ll ce(xg)
< 2¢?

obs»

1G] (o) £(x)

where we used that [|G)(vo)| £(xo) < €% . This allows us to prove that Gl is Lipschitz-continuous
by following the same reasoning as in the real case. O

As a second consequence, we establish an explicit formula for the orthogonal projector II,, ,,.
Lemma 2.8. Let T > 0, Rp > 0, ng € N and V C B:[,S’%?(XU). Under Assumptions 1, 2a
(with Ry) and 3 (with T, Ry, ng and V), for all n > ng and for any v € V, the orthogonal
projector Iy, , : L?([0,T],X°) — L2([0,T],X°) on Yy, = Im(Opy) is well-defined and 11,,,, =
O”W(O;,von,v)ilolv‘

Proof. Let us consider ﬁn,v = Onw(0} ,Ony) 05 . From Theorem 2.7 this operator is well-
defined as a map from L?([0,T], X7) into itself. We first note that it is the identity on Y, ,: if
Y € Vnp then it can be written as y = O, ,(¢ for some ¢ € L%([0,T], X?) and therefore

ﬁn,vy = Hn,von,vC = On,v(o:;,von,v)_l(O:;’yon,v)c = On,vC =Y.

Additionally, by definition we note that Im(ﬁnm) C Ynw- Now, observe that ﬁn,v is an orthogonal
projection in L2([0,T], X°). Indeed, observe that

H?L,v = ON,U(O:,vON,U)il(I);{L,U ° OR,U(O:,vOmv)ilOz,v = Onvv(O;,uOn,v)iloz,v = Hn,v-
By recalling that the operations taking adjoint and inverse commute, we arrive to

(M€, Orzo1,x7) = (Onw(O5 1, Onw) " O 1€, C) 120,17, x7)
= <fa On,v(O:,von,v)710;,uC>L2([0,T},X0)

= <£uﬁn,v€>L2([0,T},X")‘

By construction, ﬁn,v is a map from L2([0, 7], X?) into itself whose image is Im(Oy, ;) = V. Since
YVnw is a linear subspace of L2([0,7], X?), by uniqueness of the orthogonal projection we conclude
that II,, , = 11, .. O

Remark 2.9. For notational purposes, when needed we will also write II,, ,, as the operator with
value on )V, ,,. That way, for instance, the operator O;}})Hnw is well-defined for any v € V.

2.3.1. Linear reconstruction. To ease notation, we consider the operator Z,(t) : £ — f(f Sn(v)(t,s)&(s)ds

and denote Z,(-) when the operator is seen with value in C°([0,7],Y) for a suitable Banach space.
The above discussion will enable us to solve an observability Cauchy problem, which is the content

of the following Lemma.
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Lemma 2.10. Let Ry > 0, T >0, n9 € N and V C B:[S%](XU). Under Assumptions 1, 2a (with
Ry > 0) and 3 (with T, Ry, ng and V), there exists C > 0 so that for any n > ng, v € V,
g € L*([0,T],X°) and h € L'([0,T], X?), there exists a unique w € C°([0,T], Q,X°) solution of

dw = (A+ QuDf(v))w + Quh,
I, ,Cw =1I,,g9.

It satisfies w(0) = wo := Oy, L1l [g — CLy(-)Qnh] and is given by w(t) = Sp(v)(t, 0)wo+ZLy(t) Qnh.

We denote by w := F,(v)(g, h) the associated solution operator. Moreover, we have the estimate

(2.22)

[ Fn(v)(g: ) llcogo,r1,0nx7) < Clnwgll2o,m,x0) + CIQnhll L1 (0,17, x7) (2.23)
uniformly in v € V and n > ng, and the map
v eV Fulv) € L(L*([0,T],X°) x L*([0,T],X7),C([0,T], 2, X)) (2.24)

18 Lipschitz-continuous and uniformly bounded with respect to n > nyg.

Proof. In view of Theorem 2.4, to be solution of the first line of (2.22), it is equivalent to be written
as a Duhamel formula

t
w(t) = Su(v)(t,0)wo + / Su(0)(t, 5)Quh(s)ds, (2.25)
0
for some wy € 9, X?. So, we need to compute wg € Q,X°?. Given the Duhamel’s formula, we have
w € C°[0,T], Q,X°) C L*([0,T], 2,X°) and we can compute
I, ,Cw =1I,, , C [S(v, -, 0)wp| + IL,, , C[Z, () Qnh].

Observe that if wy € Q,X7, then C[S(v,-,0)wy] = Oy wo, and therefore II,, ,C[S(v,-,0)wo] =
IL,,, Op vwo = Oy pwo by definition of 11, ,,.
Since both belong to ), , and we want 11, ,Cw = II,, ,,g, we should have

O, o wg = O, I, ,Cw
= 0, ,CS(v,-,0)wy + O, 11, , C[Z,(-) Qnh]
= wo + O, 11, ,C[Z,(-) Qnhl.

With the initial data wg given by the above formula, (2.25) is satisfied as well as the observability
condition II,, , Cw = II,, ,g. Indeed, it belongs to Q,, X7 and by reproducing the same computation
backwards, we have

I, ,Cw =1I,, , C [S (v, -, 0)wo + Z,,(-) Qnh] = I, , Opwo + 11, , CZ, () Qb
= Hn,vonoglnn,v [g - CIU()th} + Hn,’UCI’U()th
= Hn,v [g - CI@()th] + Hn,'uCIv()th = Hn,’ug-

The uniqueness follows from the uniqueness of the definition of wy.
We now prove estimate (2.23). From Theorem 2.1, we have the estimate

lwlleo,r),00x7) < Cllwollxe + |QnhllLro,17,x7))
where C' is a constant uniform in V and n > ng € N. Hence we are led to estimate wy. As a
consequence of Assumption 3, by using estimate (2.20), we get

lwollxe = 05 MLy [g — CZ,(-) Q]| x-
< Cobs|[Unwgl 220,77, x7) + Cobs | Mn,w CLy () Qubl| 20,17, x7)-
We now use the unitarity of II,, ,,, Holder’s inequality and Theorem 2.1 to obtain
1T, CZy () Qnlill 22 (j0,17,x7) < ICTo () Quhll 20,17, x7)
<|Cllzxo)l1Zo(-) Quhll 20,17, x7)
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< TV2||C| g(xo) 1T () Qnbll poo po77,x7)
< OTY[Cll o) 1Qnbll 0.7 x):

uniformly in v € V and n > ng € N. Gathering the previous estimates, we arrive to

|wllcoqo,11,0,x7) < CCobslMnvgll 20,1, x7) + C (1 + 01T1/2¢obs||CHc(Xa)) 1 Qnbll L1 (0,17, x7)-
In particular, the nonlinear map
veVi— Fn(v) € LIL*([0,T),X%) x L'([0,T], X7),C°([0,T], ©,X)) (2.26)

is well-defined and bounded, uniformly with respect to n > ng. To prove that it is Lipschitz-
continuous, we first use the explicit expression for the projector 1I,, given by Theorem 2.8 to
write

Fa(©)(g,h) = Su(0)(-,0)0;, W [9 — CZu(-) Quh] + Lo (1) Qnh
= 5n(0)(0)(0,,0n0) " Oy g — CLu() Quh] + o) Quh.
From Theorem 2.1 and composition with linear maps, the map
veVi— 1,9, € LIL(0,T],X°),C°[0,T], Q. X))

is Lipschitz-continuous with constant uniform in n € N. Furthermore, combining Theorem 2.1 and
Theorem 2.7, we obtain that the map

v € Vi 8u(0)(0)(0;,,0n0) " Oy € LILA((0,T], X7), C°((0, T, Q0 X7)
is Lipschitz-continuous with constant uniform in n > ng. Therefore, by composition of Lipschitz-
continuous maps, the map (2.26) is Lipschitz-continuous as well
[[Fn(v1) — ]:n(v2)HL(L2([0,T],XU)xLl([O,T],Xo),co([o,T},Xff)) < Cllvy - ’UQHCO([O,T],XG)

where C' > 0 is a constant uniform in n > ny. O

Remark 2.11. After Theorem 2.10, the fact that the operator F,, is bounded, implies that the map

(v,g,h) — Fn(v)(g,v, h) is Lipschitz-continuous in the C°([0, T], X7) x L2([0, T], X°)x L' ([0, T], X)-

topology whenever the pair (g, h) belongs to a bounded set of its corresponding space.

Lemma 2.12. Under the notation and Assumptions of Theorem 2.10, if we further enforce As-

sumption 2, and Vi C V is a compact set in C°([0,T], X7), there exists n > 0 such that the map

Fn, restricted to Vi admits a holomorphic extension as

Fr v € Vi +BOTX7) — FF(v) € Lo(L2([0,T], X&) x LY([0,T], X&),C°([0,T], Qu X))

(2.27)

This extension is Lipschitz-continuous and bounded uniformly with respect to n > ng. Furthermore,

there exists a constant C' > 0 such that for anyn > ng and v € Vi +B,,(X?) the following estimate
holds

15 (@) (g, W) coo,11,0.x2) < Clnwgll L2011, x2) + CllQnhll L1 (0,17, x2) (2.28)
for any (g,h) € L*([0,T], XZ) x L'([0,T], XZ).
Proof. After Theorem 2.10, we have an explicit formula for F,, that is, if v € V,
Fa(0)(g,h) = Sn(0)(-,0)(0% ,On) " O [ — CLuQnh] + Tu(-) Quh,

for any (g, h) € L*([0,T], X°) x L'([0,T], X?), where we used the explicit formula for the projector
Ly = Onw(O ,Onw) 1Oy, given by Theorem 2.8.

)
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From Theorem 2.6, Theorem 2.7 and Theorem A18, there exists n > 0 such that we have well-
defined holomorphic maps

SC . vevK+Bl£;§](XU) —  SC(v) € Le(QnXE,CO([0,T), Q,X2)),
gh vevk + BT (xo) — Gh(v) € Lc(Q,X2),
Adj: ve Vi +B (X)) s Adj(Onw) € Lo(LA(0,T], XE), QuXE),

and on Vg they coincide with their respective real counterparts restricted to Vg . Similarly, by
linearity, we have the holomorphic map

v € Ve + BI(X7) — I5()Qn € Lo(LN([0, T, X&), C°((0, T], Qu X8))-

characterized by ZS(t) : & fot SC(v)(t,s)&(s)ds. Also, C can be extended by linearity into
Lc(Q,X¢). Following a similar argument as in the proof of Theorem 2.7, by composition, we have
a well-defined holomorphic map }'f as specified in (2.27), characterized by the formula

Fr@)(g,h) = Sg(0)(,0)G](0)Adi(Onv) [g — CIS Qub] + I7 () Quh

Given the above explicit formula and that all the maps involved in the definition are Lipschitz
continuous and bounded, by composition, so is ]-";(L: uniformly with respect to n > ng. Moreover, by
construction, on Vg the map .ng coincides with F,, restricted to Vg, which finishes the proof. O

Remark 2.13. Note that we find a holomorphic extension of F,, restricted to Vg rather than on
V, where it is initially defined. Moreover, this extension does not necessarily solve an observability
problem such as (2.22).

2.3.2. Finite determining modes. As a first direct consequence of the previous result, we can get
a finite determining mode result: two solutions of a nonlinear equation with the same observation
and the same low frequency modes are the same. This result will not be used directly later, but
can be considered as an easier version of what will follow where we will actually construct the
reconstruction operator and study its regularity.

Proposition 2.14. Let Ry > 0 and A C X7 be a nonempty compact set. Under Assumptions 1, 2a

(with Ry) and 3 (with T, Ry, ng and V = B[O T]( A) ), there exists n > ng such that the following

holds. Leth € L*([0,T],X°) and g € L2([0,T],X ) Let u(t) and u(t) be two solutions on (0,T) of
)

{ Ou = Au+f(u) +bH, on (0,7),
Cu(t) = g(t), forte (0,T),

such that u, u € BE%)T] (X7, A). If Pou(t) = Ppu(t) for all times t € [0,T], then u(t) = u(t) for all
te[0,T].

Proof. By assumption P,u = P,u as applications in B%T}(X 7). Let z = u — u and note that it

solves

{ Oz = Az + f(u) — f(u)
Cz=0.

If we linearize f around u, we can write
f(u) = f(u) = f(z +u) — f(u) = Df(u)z + H(u, 2).
By assumption z = Q,(u — u) and thus by applying Q,, to the equation satisfied by z, we get

{ Oz = (A+ Q,Df(u))z + QuH(u, 2)
Cz=0
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We are in the framework of Theorem 2.10, from which it follows z = F, () (0, H(u, z)) along with
the estimate
Izl coo,),x7) < CIQnH (W, 2)|| L1 (0,1, x7)

where C > 0 is uniform in n > ng. Moreover, using that Df is Lipschitz-continuous we obtain
2
[2llcoqor.x7) < CllzllEo o1, x7)

and thus whether [|z[[co(o,7,x7) = 0 or [|2]|co((o, T],X7) > 1/C. In the former case, we are done. In
the latter case, since z = Q,,(u — u) and both u, u belong pointwise in time to the same compact
A C X7, we can find n > ng such that ||z||co (0,7, x°) < 1/C, given that C only depends on ny.
This yields z = 0 and consequently u = . n

2.4. High-frequency nonlinear reconstruction. Let v € B:[,g’z? (X?). We are now interested in
solving the nonlinear observability problem at high-frequency

{ Ow(t) = Aw + Quf(v +w) + Qph  on [0,T],

2.29
Hn,vcw = Hn,vg‘ ( )

To this end, as explained at the beginning of this section, we will consider the linear variation of v
along Q,, Df(v) by writing

flw +v) = f(v) / Df(v + Tw)wdr = Df(v)w + f(v) + H (v, w).

This lead us to study the system

{ dw(t) = (A+ QuDf(v))w + Qn(f(v) + H(v,w)) + Qnh

Hn,vcw = Hn,vg- (230)

Under the assumptions of Theorem 2.10, it suggests that the initial condition of the above system
must be given by

Wo = Or:};Hn,v [9 — CZ, Qn(f(v) + H(v, w) + b)]
This yields the nonlinear operator @, , 5 4 : C°([0,7], 9, X7) — C°([0,T], ©,X7) defined by
Py 00.0(w) = Fn(v) (g, §(v) + H(v,w) + ). (2.31)

We are then led to seek for fixed points of the operator ®,,, ,. Indeed, as a consequence of the
above formula, a fixed point of ®,,, 5 4 is a solution of (2.30).
The aim of this section is to prove the following reconstruction result.

Proposition 2.15. (High-frequency reconstruction map) Let T > 0, Ry > 0, R1 > 0 and ng € N.
Let A1 and Ao be two nonempty compact subsets of X which are stable under the projection P,.

Assume that Assumptions 1, 2a (with Ry) and 3 (with T, Ry, ng and V = Bz[,)ol’%ﬂ (X7,A1)) hold.
There exist n* > ng, n >0 and 0 < R < Ry such that, for any n > n*, for any v € B[OT (X7, A1),
he BE%T} (X7, A3) and g € B,(L*([0,T],X7)), there exists a unique solution w € BET (QnX7) of

{ I, , Cw = 11, 9. (2:52)
This defines a nonlinear Lipschitz reconstruction operator
T o 7’T o g 7T g
R4 BYal e, Ay < BRT(X7, Ag) x By (L2(0,T],X7)) — BYT(Q,X7) (2.33)
(v,b,9) — w:=R(v,h,9).
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Furthermore, if additionally, § satisfies Assumption 2 and Vi C Bi[i%z] (X7, A1) is nonempty and
compact in C°([0,T],X), then there exist n > 0 and m > 0, so that the map R restricted to Vi
in the first variable extends holomorphically as

R: (Vi +BYTI(X%)) x (Be"(X7, Az) + BT (X))
x By (L2(0,T], X)) — Bpal(Q,X7). (2.34)

Remark 2.16. The compactness in space is related to the existence of the reconstruction operator,
whereas the compactness in time-space allows us to find a holomorphic extension uniformly with
respect to the input acting trough the nonlinearity.

Remark 2.17. Similar to Theorem 2.13, we find a holomorphic extension of the reconstruction
operator R when its first variable is restricted to a compact subset Vg of Bg}g (X7, A), where it
was initially defined. This suggests that such extension is not necessarily a reconstruction operator
anymore. However, to not over complicate the notation we keep the same letter to denote this
extension.

Proof of Theorem 2.15. In view of Theorem 2.10, we are looking for w solution of
w = Fu(v)(g,f(v) + H(v,w) +b).
We thus consider the nonlinear operator ® defined by
(I)nﬂhh,g(w) = ]:n(v) (97 f("l)) + H(U, U)) + h)

We will prove that it is well-defined as a map from C°([0,T], Q,X?) into itself and that it has a
fixed point in a small ball, which also satisfies (2.32). Without keeping track of the dependence
on the parameters, we simplify the notation by writing ®, := ®,,, 4. Also, for simplicity we will
assume that A; and A are the same compact set, which we simply denote by .A. This simplification
is harmless in the proof and only serves to simplify the notation.

Step 1. Fized point: real-valued case. We will prove ® is a contraction in the ball BQ’T}(QnX ),
for some R > 0 to be specified later.

Let w € BQ’T](QTLX"). By using estimate (2.23) of Theorem 2.10, we get

1@ (w)|cogo,77,0, x7) = IFn(v)(g: §(v) + H(v,w) +b) lcogo,11,0, X
< ClMy,wgll2(j0,17,x7) + CllQn(F(v) + H(v, w) + bl L1 (0,77, x7)>

for a constant C' uniform in n > ng € N and v € B:[,)O}’E?(XU, A).

To estimate the first term we note that, for any v € Bg}%?(X ?,A), II,,, is a projection on

L%([0,T), X7), and thus for g € B,,(L*([0,T], X)) we have

1TL,w9l 220,17, x7) < N9l L2(0,17,x7) < 1
For the second term, under Assumption 2a, the differential Df is Lipschitz of constant L, thus
T 1
e o) < [ ([ 105+ r0) = it leceeydr ) ollxede

< TL|[wl|Zoo11,x7):

Since f: X7 — X7 is continuous and A is compact in X7, we have that f(.A) is compact in X7. In
particular, we observe that {f(v(t)) | v € B:[,S’%f] (X?,A), t € [0,T]} C f(A). Since the sequence of
high-frequency projectors (Q,,), converge pointwise to 0, the compactness of f(.4) gives us that, for

any g > 0, we can find n* > ng so that for any v € Bg}’;g] (X7,.A) we have Han(v)HU([QTLXU) < no/2
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for all n > n*. Similarly, we get that [|Q,b||11(j0,77,x7) < 10/2 for all n > n*. Gathering the previous

estimates, we obtain
1@y (w)llcoqo.11,0, x7) < C(n+ no) + CTLR?. (2.35)
Concerning the difference, for wy, wy € B[RO’T](QnX 7), we observe that
[ @y (w1) — Py(w2)llcogo,77,0,x7) = 1Fn(v)(0, H(v, w1) — H(v, w2))llco(o,1),0, x7)
< Ol (v, wn) — H(v, w2) |1 o 17,57
A simple computation gives us
H(v,w1) — H(v, w2)
1
= / ([Df(v 4+ Tw1) — Df(v)] (w1 — w2) — [Df(v + Tw1) — Df(v + Twa)]ws)dr.  (2.36)
0
Thus
[H (v, w1) — H(v, w2) || L2 (0,77, x7) < CL([Jwillcoqo,ry,x) + llwallco(o,r),xy) lwi — wallcogo ), xe)-
We deduce
[ @y (w1) — @y(w2)||coo,7,0,x7) < 2RCL||w1 — wallco(jo,m,x7)- (2.37)

In view of inequalities (2.35) and (2.37), if we choose R = min{ &+, 37, Ro} and g small enough,

then there exist 7 > 0 and n > n* so that ®, reproduces the ball BE’T}(QnX ?) and is contracting
in such set.
We have then a well-defined reconstruction map

R: (v,5,9) € By (X7, A) x B TH(X7, A) x B,y(L*([0,T], X7)) — w € By (9, X?).

The fact that R is Lipschitz, follows from composition of Lipschitz maps. As we did to get inequality
(2.37), under Assumption 2a, we get that

[ H (1, w1) — H(ve, w2) | prjo,17,x7) < 2RCL[Jwi — wallco(o,1],x7) + 2RoCLlv1 — v2|lco(o,,x7)-
Thus, (v, w) + f(v)+H (v, w) is a Lipschitz-continuous map. Using Theorem 2.10 and Theorem 2.11,
by linearity in the variables h and g and by composition of Lipschitz maps, we get

[Pr,01,61,01 (W1) = Prajvg .92 (W2) [ 00,77, x0) < CR|lwi — wallcoo,1),x7)

+ C(llvr — vallcogo,ry,x7y + 161 = b2lleoor, xo) + 1191 — 92/l 20,17, x7)) -

Since the fixed points are given by @, .. p, 4 (w;) = w; for i = 1,2, up to making R smaller if
necessary, we get that R is Lipschitz-continuous.

Step 2. Complex extension. Under Assumption 2, by Theorem 2.12, there exists 7 > 0 such that we
have a well-defined holomorphic map ]—"fg, extension of the map F,, restricted to Vg, that is,

ve Vi + BYII(X7) — FE(v) € Lo(L2((0,T), X&) x L1([0,T], X&), C°([0, T, @ XE)).  (2.38)
Let 11 > 0 to be fixed later. Let us consider ®C given by
5 (b, 9, v, w) = Fy (v) (g, F(v) + H(v,w) + b)
for
ve Vi +BYT(X),h e BRT(X7, ) + BET(X?), g € Byy(L3(0,T], X)), w € By (QX).

We need to verify that this map is well-defined. By linearity of FC(v) with respect to g and b, as
well as by the linearity of Q,,, it only remains to check that the map (v, w) — f(v) + H (v, w) is well-
defined. By Assumption 2, up to making constants smaller, as long as n+ 1 < 36/2 and R+ n <
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3Ry/4, for v € Vi + B[O T](X") and w € BOT](QTLXU), we have v + Tw € Bi[’)%joﬂlthrR,ner(XU) C
BZB%?%( 7) for any 7 € [0,1]. Therefore, the map (v,w) — f(v) + H(v,w) is well-defined from
Vic + Bipy (X7) x BRT(Q,X7) into C°([0,T], X2), and thus into L'([0,T], Xg) as well.

Let v = v1 + z with vy € B[O T]( JA) and z € B[O T]( X?). By employing Theorem 2.7 and
Theorem 2.8, there exists C' > 0 1ndependent of v and n > ng such that

IMLn,091 220,77, x2) < O

For h € B o, T]( JA)+ B[O T}( X7), using the compactness of A to control the real part, we have for
n>n*

19nbllL1(0,77,x2) < 5 +1Tn

A Taylor development around vy allows us to write f(v) = f(v1) + fol Df(vy + 72)zdr and thus

”an(v)HLl([O,T},X“) < ”an(vl)HLl([O,T},Xg) + M||Z”L1([0,T],Xg)

<%+2TM

For the last term, we have

10t (0, )11 o.11.x2) < / (/ ID}w + 7w) — Dj(0) | oxe dT) ool o d
< TLHwHCO([O,T],X(g) < TL(R+m)>.

Let us remark that the above estimates are all uniform with respect to n > n*.
As we did in the real-valued case, but instead under Assumption 2, by Theorem 2.12, we have

||(I’S(w)”00([0,T],Xg) < C(”Hn,ngLQ([O,T],Xg) + 1Qn(F(v) + H(v, w) + fJ)HLl([o,T],Xg))
and hence, for a possibly different constant C' > 0 depending on the previous bounds, we have
”‘I’S(w)HcO([O,T},Xg) <C(n+mno)+C(R+m)>
Similarly, we have
195 (w1) — ©F (w2) [l oo o7, x7) < 2CL(R + m)||wi — wallcogor), x2)-

Up to shrinking both R and 7 if necessary, for 1o small enough we can choose 1; > 0 such that @S is
contracting and reproduces the cylinder B (QnX 7). Since the map ®¢ is a complex extension of
the real map ®,, from Step 1. when its first Varlable is restricted to Vg, it follows by uniqueness of the
fixed point that R as specified in (2.34) coincides with the complex extension of the reconstruction
map (2.33) when restricted to Vi in the first variable.

Step 3. Regularity of the fized point. By Theorem A20, that the map (v,h,9) — w = R(v,b,g)
as specified in (2.34) is holomorphic follows by proving that the map (v,w,b,g) — (I)nh gv(w)
is holomorphic. Moreover, in view of Theorem A13, it is enough to prove that the map @S is
holomorphic in each one of its variables separately whilst the remaining ones are held fixed. Since
for each v € Vi + Bl,%T] (X9) the map FS(v) is a linear continuous operator, the holomorphicity
with respect to h and g is clear. It remains to check that ®C is holomorphic in v and w, separately

First, to check that @;CL is holomorphic with respect to v, by linearity of FS it is enough to check
that the map

Tn v € Vie + BUTI(X7) — FF(v) (g, §(v) + H(v,w)) € C°([0,T], QuX2) (2.39)
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is complex differentiable, with g € B,,(L3([0,T],X")) and w € By (Q,X7) being held fixed.
First, note that the map

v € Vi + BETH(X7) v §(v) + H(v, w) € C°([0,T], XE)

is holomorphic. Indeed, on the one hand, under Assumption 2 we can easily extend f as a holomor-

phic map v € Vg + B[O 7] (X7) = §(v) € CO([0,T], XZ). On the other hand, as we did in the proof
of Theorem 2.6, we can check that H, : v — H(v,w) is complex differentiable and its differential

dHy - Vi + B[O 4 (X7) — Lc(CY([0,T], X&) is characterized by
1
Ho (0)h = / (D*(v + Tw) — D*(v) [, wldr,
0

and therefore the claim follows. Let us now consider the following (nonlinear) operators.

o Let St v— (FE(0)(g,-), f(v) + Huw(v))) be defined as a map from Vg + B[O 7] (X7) into
Lc(LY([0,T],X2),C%([0,T), ©,X2)) x C°([0,T], XZ). From Theorem 2.10 and the linear
continuous embedding C°([0,77], XZ) — L'([0,T], X&), we see that the first coordinate
defining S,, is holomorphic. Moreover, by the previous discussion, its second coordinate is
holomorphic as well, and therefore S,, is a holomorphic map.

e The evaluation map & : (T,1) — T defined from Lc(L'([0,T], X&), C°([0,T], 9, X2)) x
LY([0,T], X2) into C°([0,T], ©,X2) is linear on each coordinate and thus holomorphic.

By noticing that (2.39) can be written as J,, = £S,,, by composition of holomorphic maps, we get

that 7, is holomorphic as well on Vg + B[O Tl (X7). A similar argument, but simpler, proves that
@S is holomorphic with respect to w When the other variables are held fixed. This finishes the
proof. O

2.5. Analyticity in time of the observed solution. In this section we prove Theorem 1.8.
The main building block is the following reconstruction result, where we show the existence of a
holomorphic operator that allows us to reconstruct the high-frequency component for the solutions
of our nonlinear system by means of the low-frequency component as an input.

Theorem 2.18. Let T > 0, Ry > 0, Ry > 0 and ng € N. Let A be a nonempty compact subset of
X which is stable under the projection Py. Assume that Assumptions 1, 2a (with Ry) and 3 (with
T, Ry, ng and V = B[OT (X7, A+ A)) are enforced. Then, there exist n > ng, 0 < R < Ry and a
nonlinear Lipschitz reconstructwn operator R
R B (P, X7, A) x B (X7, A) x BRT (X7, A) — BR"(0,Xx7) (2.40)
so that, for any u € BEZ(’)T] (X7, A), b € B[O T]( JA) and by € BgiT] (X7, A) satisfying
Ou=Au+f(u+b1)+bh2  in[0,7],
Cu(t) =0 tel0,T],
then Qnu = R(Pnu,bi,b2). Moreover, if additionally, Assumption 2 is enforced and K is a
nonempty compact subset of C°([0,T], X%) which is stable under the projection P,, there exist

n,m > 0 so that if by € BE%)T} (X7, A)NK, for any u € Bgéﬂ (X7, A) N K solution of (2.41), then
R with its first variable restricted to an n-neighborhood of Ppu extends holomorphically as

(2.41)

Rt (Pau+BYT(P,X7)) x (B (X7, 4)n K+ BOT(X7))
x (BR(x7,A) + BET(X7)) — BRi(Q,X7). (2.42)

Remark 2.19. In practical applications, most of the time A will be a bounded ball in X? ¢ for some
€ > 0, which is stable under P,, and compact in X7 as a consequence of Assumption 1.



28 UNIQUE CONTINUATION AND STABILIZATION FOR NLS UNDER THE GCC

Proof. Let us consider a cutoff function x € C°(R, [0, 1]), whose support is contained in [—1, 1] and
satisfies x(s) =1 for s € [-1/2,1/2]. We define R as

R(v,b1,b2) = R(v + b1, ba, —x(n~ |Cvl| 20,77, 7)) Cv), (2.43)

where n* > ng, 7 > 0, 0 < R < Ry and the operator R are given from Theorem 2.15, with
A = A+ Aand Ay = A.
Observe that x(n™|Cov|l 120,11, x7)) = 0 if [|Cv]| 2(j0,77,x7) = 7, so that we always have

HX(nilHCUHL2([O,T],XU))CUHL2([0,T},X°) <n.

Also,v+by € B[Q%g] (X7, A+ A) for every n € N. In particular, R is a well-defined map as precised

in (2.40) with n > n*.
Now, we want to check the requirements to ensure the reconstruction property. Let u be as in
the theorem and solution of (2.41). Let us recall that v = P,u + Q,u is a mild solution of (2.41)

in Bl[g(’)ﬂ(X 7, A). For every n € N, since P,X? is finite dimensional and the operators A and P,
commute, v := P,u is a mild solution of

Opv(t) = Av(t) + Puf(u(t) +b1(t)) + Pnba(t),

and it belongs to ng(’)T] (PnX7). By hypothesis u(t) € A for all ¢t € [0,7], and since A is stable

under P, it follows that P,u € ng(’)T] (P,X?, A). Additionally, we need to check that, for n > n*

large enough, we can impose CP,u and Q,u to be small enough in X?. Given that A is compact,
utilizing the equation CP,u = —CQ,,u, the continuity of the operator C and that (Q,,),, is pointwise
convergent to 0, for any 1 > 0 we can find ny > n* independent of u, so that for any n > ny,

HCPNUHLQ([O,T},XU) = ”CQnUHL%[O,T},XU) <n/4.

Similarly, we can find ny > nj such that Q,u € BES’T](QnX“). Now, let us fix n > no. Then, if
w := R(v, h1,bh2), by definition of R we have that

w = R(Pnu + h17 h?) _Cpnu)
is the unique solution in BQ’T](Q,ZX 7) to

{ ow = Aw + an(Pnu +w + hl) + th27
Un,p,u+h, Cw = =1y p,utrh, CPru.

Further, notice that Q,u € C°([0,T], ©,X°) solves

8thu - AQnU + an(lpnu + Qnu + []1) + anQa
U, p,u+h CQrw = —1ILy p,utp, CPru

and it belongs to BE’T} (9, X7). Note that A+ .A is compact and stable under P,,. Since P,u+bh; €
BYI (P X7, A+ A), by € BT (X7, A) and ~CP,u € B,(L([0,T], X)), by definition of R, we
have Q,u = R(P,u+ b1, b2, —CP,u) and therefore w = Q,u = R(v, b1, h2).

In regards to the holomorphic extension, we check the required properties. If v is complex-valued,
in (2.43) instead we consider X(n_l||CU||L2([0,T},X5))- Observe that K + K is stable under P,. Let
us consider Vg := Bg}%? (X°, A+ A)N (K + K), which by hypothesis is compact in C°([0, T], X7).
Further, by adjusting n if necessary, the compactness of A provide us with the bound

|CPrullL2(j0,1),x7) < 1/4-

Given the explicit form of the complex extension of linear operators, the map v — x (7™ ||Cvl| 2 (0,17, xg))
is constant equal to 1 around P,u € Vg and consequently, holomorphic in some neighborhood
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Pru + Bl,olz;]l (PpX7) for 71 > 0 small enough. Moreover, up to making n; smaller if needed, say
m < n/3, we see that
g 9T g ag o
(Pou+ BOTN (P, X7)) + (B (X7, 4) n K+ BT (X)) € Vg + BT (X7).
Thus, the holomorphic extension of (2.43), as specified in (2.42), is a consequence of Theorem 2.15,
up to renaming n; as 7. O

2.5.1. Analyticity in time. Here we prove the main theorem of this section, that is the abstract
Theorem 1.8 of analytic regularity stated in the introduction.

Proof of Theorem 1.8. First, by hypothesis u € BE&T*}(X”, A)N K. Since 7 — max, [ 7+||Sh1(t +
iT)|| x< is a continuous function on [—u, u] that is equal to zero at 7 = 0, there exists 0 < ¢/ < p
so that maxcjo 77 [Sh1(t +i7)| < n for 7 € [—4/, '], where 7 is given by Theorem 2.18. We can do
the same for ha. We denote R1 = max,c(o 7+|4i[—pu | D2(2)[ xo-

Let n>n* n>0,0< R < Ry and R be given by Theorem 2.18 with the chosen R;.

Let 0 < v < T* —T. With these two choices, for each s € [—v, T* —T — ] let us denote by hf the
application ¢ — b1 (¢t + v + s), which belongs to BE%’)T] (X7, A). Moreover, the application s — b is
continuous. Indeed, since ¢t € [0,7%] — hi(t) € X is a continuous map defined on a compact set,
it is uniformly continuous. Hence, for every € > 0 and any t € [0, 7], there exists 6 > 0 so that for
any s, sg € [—v, T* =T —v] with |(s+1t) — (so+ )| <9, then ||[h1(t +v+s)—b1(t+v+s0)||xc < e.
Since the later property does not depend on t, we can take SuPe(o,7] N the last inequality to obtain

that ||h7 — b1°[lcoo,m,xe) < €. We do the same for ha, so we have h3 € BQ;T](XU,A) for any
s € [-v,T* — T — v] and moreover the map s — b3 is uniformly continuous.

Step 1. Time-shifted reconstruction operator. Let us define for s € [—v,T* — T — v], u® as the
application t — u(t + s + v), which belongs to Bg(’)ﬂ (X7, A). Let us decompose u = Ppu+ Quu =:
v+ w and similarly u® = v® + w®. For any fixed s € [—v,T* — T — v], that u satisfies (1.8) implies

Opu® = Au® +§(u” + b) + b3 on [0, 77,
Cu’(t) =0 for t € [0,T7.

Since A is stable under P,, we obtain that for any fixed s € [—v,T* — T — v] we have v® €
BE%’)T] (P,X?, A). Then Theorem 2.18 gives

w® = Quu® = R(Ppu®, b7, b3) = R(v*, bi, b3), (2.44)
with equality meant in C°([0,T], Q,X?). If we denote
9= Puf(u+b1) + Pabz = Paf(v +w +b1) + Paba € CO((0, 7], PuX7),
then v € C1([0, T*], P, X?) solves
0w = PpAv+g, on [0,T7]. (2.45)
With the related notations (see Section A), Theorem A2 implies
0sv° = PpAv® +¢°, on [—v,T" —T —v). (2.46)
Furthermore, since Ry + R < 2Ry, for any s € [-v,T* — T — v|, , by using equality (2.44),
9" = Puf(v" +w* +b7) + Pub3 = Puf(v” + R(v", b7, b3) + b) + Pub3,
with equality in C°([0,T], X?). This motivates us to introduce the map

Pl T =T =] x B (PX7, A) — CO([0,T], PuX”)
(5,0) = Puf(0+R(T,7,03) + b7) + Pubs.
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This application is well-defined, continuous (by algebra of continuous functions) and Lipschitz-
continuous with respect to the second variable (by Assumption 2, that R is Lipschitz and compo-
sition of Lipschitz maps).

Observe that b3 € By (X°, A), b3 € By /(X, A) and & € By (P, X7, A) imply, by construc-
tion, that 0+R (7, b, h3)+b; € B:[&z? (X7) forall s € [—v, T*—T—v]. Therefore f(0+R(0, b5, h5)+b?)
is well defined and so is } Recall that R is Lipschitz on its variables, that is, there exists C' > 0
such that

IR(3,b3,03) — R(T*, 0,03 )l coo.ry,x0) < C (15 — 5%l coo,r],x7)

+ 1165 = b5 llcoqory,xo) + 1165 = B3 llcoo,r,x7))

for any o, v* € ng(’JT] (PnX?) and s, s* € [-v,T* — T — v]. The continuity of f then follows by the

continuity of s — (h7,b3), Assumption 2 and by algebra of continuous maps. The same estimate
along with Assumption 2 shows that

(s, 3) = (s, 7)lcoor),pnxo) < ClIE = 7%l co(jo.77,9,x7)
for any 0, 0* € BE%’)T] (PnX?) and s € [—v,T* =T —v].
Step 2. Holomorphic extensions. First, let us consider the following application
U:(s,¢) € [, T =T —v] x K— ¥(s,¢) = ¢* € C°[0,T], X7),

which is continuous since translation and restriction in time are both continuous applications. We
thus consider the compact set K defined as the image of the compact set [—v, T* —T — v| x K under
¥, which has the property that ¢° € K for any (s,¢) € [—v,T*—T —v] x K. Additionally, K inherits
the stability under P,, from that of C. Therefore, since both u and h; belong to BE%’)T*] (X7, A)NK,
and by hypothesis both A and K are stable under P, it follows that v*° € Bl[g(’)ﬂ (PoX?, A)NK and
e BE%T](X“,A) NK for any sg € [-v, T* — T — v].

We claim that for any so € (—v, 7" — T — v), there exists p > 0 such that, if we restrict Afv to
[—v,T* — T — v] x BESC’)T] (PrX,A)N KC, it admits a holomorphic extension around (s0,v%0), given
by

{ fo : Be(so,p) x (v + Byl (PuX?))  — CO([0,T], P, X2) (2.47)

(2,0) — Puf(0+R([,07,b3) + b7) + Pubi.

Since K is compact and stable under Py, there exists 77 > 0 such that, if the first variable of R is

restricted to Bg(’)T] (PnX7)N l%, it has a holomorphic extension around v*® given by Theorem 2.18,

R [0+ BT, X7)] x [BRT(X7,.4) N K+ BRTI(X7)|

< (B0, 4) + BET(x7) — BRT(Q.X°).

We need to argue that, the application z — b is holomorphic from Bg(so,p) with value in
C%([0,T], X2) for p > 0 small enough, and that the same holds for z — b3 from Bg(so, p) with
value in C°([0, 7], XZ). Indeed, since

2 € [0, T +i[—p, 1] = b1(2) € X&

is holomorphic in the open strip and continuous up to the boundary, for each sy € [—v,T* — T — V]
we can find p > 0 such that, for any ¢ € [0, 7], the application

z € Be(so, p) — hi(z+t+v) € X2
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is holomorphic and continuous up to the boundary. By using Cauchy estimates and the bound on
h1(z), for each ¢t € [0,T] and any zy € Bc(so, p), we can find £ > 0 such that
A(Ro+m)|h* _ 8(Ro + n)|hl”

06 —2|nl) — 02
holds uniformly for all z € Be(z9,£4/4) and |h| < £/4. Moreover, the last estimate is independent of
t € [0, T], so we actually have

th(Z-Fh—i-t—i-V)—f)l(z—f—t-f—v)—5h1<2+t+V,h)HXE <

8(Ro +n)[h[?

02 ’
uniformly for all z € Bc(z0,¢/4) and |h| < £/4. Further, by uniform continuity, up to shrinking
p > 0, we have that ||h7 — hiOHC'O([O’TLXE) < n whenever |z — so| < p, that is, bi lies in a 7-

neighborhood of BE%’)T} (X7, A) N K. In summary, we showed that the application

1530 — % — 81z + - + v, 1) oo o,z x2) <

2 € Be(so, p) — b € Bl (X7, A)n K + BT (x)

is well-defined and holomorphic. The argument works similarly to show that z € Bc(so, p) — b3 €
Bg&T] (X7, A) + B[O 7] (X?) is holomorphic.
By composition of holomorphic functions and Theorem A13 we get that

Be(so,p) x |00+ By (PaX7)| = B l(0.X7)
(276) = R(UahlvbQ)

is a well-defined and holomorphic map. As long as 21 + 11 < 3dp/2, that the extension ?(c defined
in (2.47) is holomorphic follows from Assumption 2, algebra of holomorphic maps, and that P, is
a linear bounded operator.

Step 3. ODE regularity argument. Observe that for any s € [—v,T* — T — v|, we proved that
g° = f(s,v*). Therefore, equation (2.46), verified by v®, can be rewritten as

O40° = PpAv® +f(s,v°), on [—v,T* —T — . (2.48)
We now consider the following ODE, locally defined in the Banach space C°([0,7],P,X?),

{ 0.£(s) = PuAL(s) + (s, £(5)), (2.49)
&(s0) = v,

where fc is the map (2.47). Observe that C°([0,7],P,X?) is of infinite dimension. However, it
can be checked that P, A is a linear bounded operator on this space. Theorem Al shows that
v®, which solves (2.49) as a time-dependent Banach valued map, also solves the ODE in the usual

sense. Since f(c is holomorphic and given its mapping properties (2.47), P, A + f(c is holomorphic

from Bg(so,p) x [v*0 + B[O 7] (PnX?)] into CO([0,T], XZ). By classical theory of ODEs in Banach
spaces [Die69, Theorem 10 4 5], we obtain a unique classical solution of (2.49),

¢ : Be(so, p') = 0(z) € C°([0,T), PnXQ),

for some 0 < p’ < p. Moreover, such a solution map inherits the regularity of the right-hand side of
the ODE it satisfies, therefore it is a holomorphic map. Since the map s € [-v,T* =T —v] — v® €
ng(’)T] (P,X?,A) is uniformly continuous, up to shrinking p’, we have that v® € v +Bq[70’T] (PnX,A)
for every s € (so — p/, o + p') and then by construction fc(s, v®) = f(s,v*). In view of (2.48) and
by uniqueness of solutions, we have £(s) = v® for s € (sg — o, s0 + p').
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Furthermore, the maps z — £(z) and

{Bc<50,p>x[vSO+B%%T]<PnX”>] — CO([0,T), P X2)

(z,0) — v+ R(v,b7,h3)
are both holomorphic in their respective spaces, and so is its composition z — £(2) +R(&(z2), b, b3).
We further notice that for s € (sg — p’, so + p'), £(s) = v® and therefore

§(s) + R(E(s), b1, b3) = v° + R(v”, b1, b3) = v° + w” = v’

where we used (2.44) and that (sg — p/,s0 + p') C (—v,T* —= T —v) for p’ > 0 small enough. In
particular, the map s € (sg — p,s0 + p') — u® € C°([0,T], X) is the restriction to a real interval
of a holomorphic map, hence it is real analytic.

Since for any to € [0, 7] the trace application ¢ € C°([0,T], X?) + ((tp) € X7 is linear continu-
ous, we obtain by composition that the application

(so—piso+p) — X°
{ s — us(tg) =ulto+s+v)

is real analytic. Observe that p’ depends on all the other parameters, while v is an arbitrary number
satisfying 0 < v < T* — T, s¢ is any number satisfying —v < sg < T* — T — v and tg is arbitrary
in [0,7]. This means that ¢ — wu(t) (which is well-defined for ¢ € [0,7%]) is real analytic in a
neighborhood of any ¢1 of the form ¢; = ty + v + sg, with tg, v and sy as before. Looking carefully
at the constraints, we see that this implies that ¢ — u(t) is real analytic from (0,7*) into X7, as
expected. O

3. APPLICATIONS TO THE NONLINEAR SCHRODINGER EQUATION

In this section we focus on the nonlinear Schrédinger equation, aiming to prove the main results
about propagation of analyticity and unique continuation announced in Section 1.1.

3.1. Preliminaries. Let L?(M) := L?(M;C) be equipped with the usual Hermitian inner prod-
uct. By the spectral theorem, —A, has a compact resolvent and thus, we can construct a complete
orthonormal basis (e;);jen of eigenfunctions of —A,, associated to the eigenvalues ()\;);jen. In par-
ticular, we have e; € C°°(M), —Ae; = Aje; with A\; > 0 and (ej, ex) r2(aq) = Jjk. We introduce the
high-frequency projector Q,, on the space span(e;);>n and then we set the low-frequency projector
Pn =1- Qn-

For s € R, we introduce the operator A, : (1 — A)%/2: C®(M) — C®(M) defined spectrally by

Asth = (14 X)), ) 12(amy €5
jeN
By duality, we can extend it as an operator Ag : D'(M) — D'(M). We define the Sobolev spaces
H*(M) = {¢ € D'(M) | Ay € LA(M)},
equipped with
(0, O s vy = (Asth, As@) 2 ngy and (|91 gy = 1As® 1720

We can similarly define the real Sobolev space H*(M;R) just by considering all the underlying
spaces above to be R instead of C.

On any H"(M) with r € R, the operator Ay is an unbounded selfadjoint operator with domain
H"™5(M) and, is an isomorphism from H"*5(M) onto H"(M). According to [Shu01, Section 11],
we have

As € Wipe(M) with op (2,€) = £, (z,8) € TgM.
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We refer to Section B for some basics about pseudodifferential operators and notation that will be
used throughout this section.
Set X = L?(M) and introduce the operator

A=iA, with D(A) = H*(M).
With the standard scalar product on X we have
A*=—A and A*A=-A%= Ag.
For o > 0 one has
X7 = D((A*A)"?) = D((-A)7) = H** (M, C).

To fit in the abstract framework given in Section 2, we shall view C as R x R. Indeed, to complexify
the complex Hilbert space H*(M;C), we note that

H*(M;C) ~ H*(M;R) @ iH*(M;R)

and thus H*(M;C) can be identified with the real Hilbert space H*(M;R?). As a consequence, we
can consider the canonical complexification of H*(M;R?), which is nothing but H?®(M;C?). This
identification will be used freely and whenever the context is clear and there is no risk of confusion,
we will just write H*(M) for the corresponding real or complex Sobolev space. Observe then that
A satisfies Assumption 1 on the real Hilbert space H*(M,R?), and it will be used throughout the
whole section, with no mention unless necessary.

Remark 3.1. If ¢ = 91 +ips € D(A) then iAgp = —Agips + iAg1p1. Therefore, under the above
identification, A acts on the space H*(M;R?) as (Aoq 70A9 )

Let x € C*°(M;R) and let us now introduce f(u) := —ix f(u) where f : C — C will be either
real C'°° or real analytic. We then consider the Cauchy problem

{ Ou = Au + f(u),
u(0) = uyp.

Observe that if x = 1, the latter corresponds to the abstract formulation of (1.1). Further, under
the identification C ~ R? we canonically identify § with a function from R? into R? and (3.1) is
actually a system of two equations.

Since A is skew-adjoint, by Stone’s theorem it generates a unitary group ¢ — e*4 on X and D(A).
In particular,

(3.1)

vt € [0,T], e oix) =1 and [le"||z(pay) = 1. (3.2)

By linear interpolation, the same holds on X7 for any o > 0.

We now verify that the nonlinearity f verifies Assumption 2. First of all, we recall a version of a
result that can be found in Alinhac-Gérard [AG91, Proposition 2.2], in relation to the regularity of
a composition.

Lemma 3.2. Let N, L € N and let g : RN — R be a C°(RN,RY) function, with g(0) = 0. If
u € L®(M,RN) N HS(M,RN), with s > 0, then g(u) € L®°(M,RL) N HS(M,RE) and ||g(u)||gs <
Cl|u|| s, where C' only depends on g and ||u||pe.

Remark 3.3. The previous Lemma is actually written in [AG91] for function in H*(R?) and f € C™
of real variable. On the one hand, such a result extends verbatim to the multivariable case, using
for instance Faa di Bruno’s formula to obtain the required estimates to verify the Meyer’s multiplier
condition. On the other hand, the same result still holds for functions in H*(M) when M is a
compact manifold with or without boundary using the definition of the norm of H*(M) by partition
of unity and sum of the norm in H*(R?) of the functions in local coordinates and with extension.
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Proposition 3.4. Letd € N, s > d/2 and x € C*°(M). Then if f is real C*°(C,C) then §f = —ix f
satisfies Assumption 2a with o = s/2 and for every Ry. Additionally, if f is real analytic, then for
every Ry > 0 there exists 09 > 0 such that § satisfies Assumption 2 with Ry and dg.

Proof. We begin by identifying H*(M, C) with H*(M,R?) = H*(M) x H*(M). Observe that with
our choice of s we have that H* is an algebra and H*(M,R?) — L*°(M,R?) with embedding
constant k. By working on each component of f, we reduce the analysis to the case where f : R? —
R, which we assume from now on. As the multiplication by a smooth function is a bounded linear
operator from H? into itself, without any loss of generality, we assume y = —1 and consider § = f.

Given that f is real C*°, by Theorem 3.2 we have that both f(v) and Df(v) — Df(0) are well-
defined in H*(M,R?), for any v € H*(M,R?) along with the bound | D f(v) — Df(0)||zs < C||v|| gs
with C' depending only on Df and ||v||p~. Therefore, using that H® is an algebra, we get, for any
v, v € H,

170~ $ - = | | DR 4o — )0 — v)dr

H
<C (1 + ‘ /01 (Df(W' +7(v—"1")) = Df(0))dr H> v — || grs

< C (1 + olle + 0/ llze) o = [+, (3.3)

where C is a constant depending only on D f and the L*°-norm of both v and v'. We apply a similar
reasoning to the second derivative of f, which lead us to

IDf(v) = Df@)leqrs) < C (A +Wwlas + 10 11ms) v =l (3-4)

Once we assume that v, v/ € Bg,(H*(M,R?)) we observe that each component of v and v' always
stays smaller than 4k R in L>(M,R), thus f is well-defined as a map on Bg, (H®(M,R?)). Further,
estimate (3.3) and (3.4) directly implies that f satisfies Assumption 2a with o = s/2.

Now, we will show that f satisfies Assumption 2 if it is assumed to be real analytic. By compact-
ness, there exists § > 0 small such that f extends holomorphically into the interior of the complex
region

SRy,s = {(21 + P22, w1 +iwg) € C? | |21], Jw1] < 4kRy and |z2|, |wa| < 2kd}.

Moreover, this extension is continuous up to the boundary and there exists a constant M > 0 so
that |f(z,w)| < M for all (z,w) € Sg,,s. We still denote by f such an extension. By identifying
C? ~ R*, Lemma 3.2 allows us to consider the composition of smooth functions defined on domains
of C? by functions in H®, assuming that the composition makes sense. Since s is the constant of
the embedding H® < L, we see that f(v) is well defined in Byg, 25(H*(M; C?)). In particular, it
satisfies the same estimates as (3.3) and (3.4).

To prove that f is holomorphic, by Theorem A13, we are led to prove that f is continuous
and holomorphic on each variable while the remaining one is being held fixed. The continuity is
direct as we already showed that f is Lipschitz-continuous in bounded sets of H*(M;C?). We first
perform a Taylor development of order 2, say f(z + r1,w) = f(z,w) + 01 f(z,w)r; +r? fol 02f(z+
mr1,w)(1 — 7)dr for (z,w) € Int(Sg,s) and 71 € C small. Since f, d1f and 9?f are smooth
functions, by Theorem 3.2, they are well-defined as maps on H®(M;C?) and moreover, for any
(v1,v2) € Int(Byg, 25(H*(M;C?)) and h € B, ,,(H*(M,C)) with 5 > 0 small enough, depending on
(v1,v2) and f, we can write

1
f(’Ul + h, UQ) = f(vl, 1)2) + 81f(v1,v2)h + h2/0 812f(1)1 + Th,’l)g)(l — t)dt, (35)
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with equality meant as functions in H*(M, C) (as vg is being held fixed). Therefore f is holomorphic
in the sense of Theorem A3 with (partial) derivative h — 01 f(v1,v2)h, which is continuous and C-
linear as a map from H*(M, C) into itself. The same argument works when v; is being held fixed.
This finishes the proof. O

3.1.1. Well-posedness. Here we briefly recall some results related to the well-posedness of (1.1) in
the subcritical case. It is worth mention that in the case where s > d/2, the well-posedness can be
classically achieved by Picard iteration in CY([0,T], H*(M)).

In dimension d = 2, a crucial tool to handle the subcritical case is the use of Strichartz estimates,
which were obtained by Burq, Gérard, and Tzvetkov [BGT04] by means of semiclassical analysis.

Theorem 3.5. [BGT04, Theorem 1] Let (M, g) be a compact Riemannian manifold of dimension
d>2. Let (p,q) € [2,00) X [2,00) satisfying the admissibility condition

2 4 ) £ (2,00).

p q 2
For any finite time interval I, there exists C = C(I) > 0 such that for every vo € L*(M) solution
of 10w + Agv = 0 with v(0,-) = vy, it holds

o]l e (z,Lamyy < CD)voll gravm -

To treat the nonlinearity and ensure the availability of the Strichartz estimates, the solution is
sought in the following Banach space

Yp = C°([0, 7], H'(M)) N LP([0, T], W= 1/P4(M)),

equipped with its natural norm, where p > max(o — 1,2), 1/p+ 1/¢ = 1/2 with p < oo, with the
notation ¢ = 2deg(P) — 1 > 3. We then have the following well-posedness result for the defocusing
NLS in dimension d = 2.

Theorem 3.6. [BGT04, Theorem 2] Let (M, g) be a compact Riemannian surface and let P be a
polynomial with real coefficients such that P'(r) — +o0o as r — +o0o. For every ug € HY(M), there
exists a unique mazimal solution u € C(R, H'(M)) of equation

iy + Agu = P'(Ju]*)u, u(0) = u,

where, for any finite p, u € L' (R, L>°(M)). Moreover, for any T > 0, the flow map ug — wu is

loc

Lipschitz continuous from bounded sets of H*(M) into Y.

In dimension d = 3 the analysis requires the use of multilinear estimates and Bourgain spaces,
which we briefly recall. The Bourgain space X*? is equipped with the norm whose square is given
by

o 2
2 s b
% = k% ) H<T+ Ak Wf)u} et

2
= #1150 @, 15

where u = u(t, z) with (t,z) € R x M, u#(t) = e"*Au(t) and m(ﬂ denotes the Fourier transform

of Pru with respect to the time variable, the latter being the projector onto ex. The associated
. sb - . . .

restriction space X7 is the corresponding restriction space with the norm

Jull 0 = inf {[|@] xso | @ =won (0,T) x M}.
T

The following technical assumption ensures that the Cauchy problem is wellposed in H'(M). It
yields a bilinear loss of sy < 1.
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Assumption WP. There exists C > 0 and 0 < sg < 1 such that for any fi, fo € L?(M) satisfying
f] = ﬂm&[Nj,QNj[(fj)J j = 1727374-
one has the following bilinear estimates: if u;(t) = eith fj» j=1,2 then

luruzl L2011 xm) < Cmin(N, L) | fill 2o | 2l 2 a0)- (3.6)

The above assumption is satisfied in the following cases (here sp+ means any s > sp):

e T3 with sop = 1/2+, see [Bou93].

e The irrational torus R3/(017Z x 027 x 037,) with 6; € R, for which an estimate with sg = 2/3+

has been obtained in [Bou07].

e 53 with sg = 1/2+, see [BGT05].

o 5? x S with sy = 3/4+, see [BGT05].
The well-posedness in each one of the aforementioned cases was studied in the corresponding

cited article. We summarize them in the following result, which states the existence for a defocusing
nonlinearity of degree 3 of the form f(u) = au + BJul?u with o > 0, 8 > 0.

Proposition 3.7. [LaulOb, Proposition 2.1] Let T > 0 and s > 1. Assume that M satisfies
Assumption. WP. Then, for every g € L*([0,T], H*(M)) and uo € H*(M), there exists a unique

solution u on [0,T] in X;’b to the Cauchy problem

i0u + Au — au — BlulPu=g on[0,T] x M, (3.7)
w(0) = ug € H>. '

Moreover the flow map
{ F: HS(M) x L*([0,T], H(M)) — X3
(uﬂag) — u

1s Lipschitz on every bounded subset.

3.1.2. Observability inequality. Let us first introduce some notation. Given w which satisfies the
GCC, by a compactness argument [L1.24, Lemma A.3] we can always find wy € w which satisfies
the GCC as well and a smooth function b, supported in w with b, = 1 on wy. To this function, we
will associate the multiplication operator C defined as

C:z€ H* (M) — b,z € H*(M), (3.8)

which is linear and continuous for any s € R. We will use this operator from now onward.

The observability inequality for the linear Schrodinger equation under the GCC is due to Lebeau
[Leb92]. Although it was obtained in the more complicated case of boundary observability, the same
result holds for internal observation.

Theorem 3.8. [Leb92] Let s € [0,2]. Let w satisfy the GCC and let C be as in (3.8). Then, for
every T > 0, there exists C = C(w,T,s) > 0 such that for any vo € H*(M) it holds

T
looll2e ey < 0/0 | G504 20 g .
Proof. The result for s = 0 follows from Lebeau [Leb92]. For s = 2, we solve the linear Schrodinger

equation with initial data zg = (1 — Ay)vg and by noticing that e“s and (1 — A,) commute, by
applying the known observability in L?(M) and the definition of Sobolev norm we get

T T
”'U()H%IQ(M) S C/O HCeltAg'UOH%_IQ(M)dt —+ CA ||[C, (]. — Ag)]eltAg'U()H%Q(M)dt-
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Since the commutator [C, (1 — A,)] is a pseudodifferential operator of order —1, the second term
in the right-hand side is of lower order and hence it can be removed by a classical compactness-
uniqueness argument (see [LL24, Section 4], for instance), proving the case s = 2. The intermediate
case s € (0,2) follows by linear interpolation. O

3.2. Propagation of regularity. In this section we recall some propagation of regularity results for
the NLS which are key to verify the compactness-related hypotheses of Theorem 1.8. The following
propagation result has been essentially proved by Dehman-Gérard-Lebeau [DGL06]. Although it is
stated in dimension d = 2 and including the more involved subcritical regularity, it is clear from
their proof that it can be adapted to higher dimensions. Below we state the result for any dimension
in an algebra and we give the proof for the convenience of the reader.

Proposition 3.9. Let T > 0, d € N and s > d/2. Let u € C°([0,T], H(M)) be a solution of the
NLS

10w+ Agu = f(u). (3.9)

Assume that w satisfies the GCC and let C be defined as in (3.8). If Cu € L*([0,T], H**V(M)) for
some v > 0, then u € C°([0,T], H**V(M)) and there exists a constant C > 0, which depends in all
the given parameters and ||u|| foo(o,11x M), Such that

[ullcoor, ms+v(my) < CICUll L2017, 15+ (M) + [l oo, ry, s (M) - (3.10)

Regarding propagation results in the subcritical case, in dimension d = 2 we have the following
result.

Proposition 3.10. [DGL06, Theorem 3] Let d = 2 and let w satisfy the GCC. Letu € C°([0, T], HY(M))
be a solution of (1.1) with finite Strichartz norms such that Oqu = 0 on (0,7) x w. Then u €
C>=((0,T) x M).

Remark 3.11. Although it is not written this way, it follows directly from their theorem as dyu = 0
on (0,7) x w implies that u satisfies the elliptic equation Aju = P'(Ju|*)u on (0,7) x w and thus
the hypotheses are satisfied by elliptic regularity.

In dimension 3, the propagation results have been adapted in the low-regularity framework by
means of Bourgain spaces.

Proposition 3.12. [LaulOb, Corollary 5.3] Let d = 3 and suppose that M satisfies Assumption WP.
Let 1/2 < b < 1. Let w satisfy the GCC and let u € X%’b be a solution of (1.1) such that yu =0
on (0,T) x w. Then u € C=((0,T) x M).

3.2.1. Linear propagation results. The main tool in the proof of Theorem 3.9 is the linear propaga-
tion result [DGLO6, Proposition 13]. It states that, for solutions to the linear Schrédinger equation,
we can microlocally propagate higher regularity along the bicharacteristic flow associated to the
symbol p(z, &) = [£]2, see Section B. We point out that, as we work on the full time interval [0, T},
we replace the Ll20c hypothesis by an L? assumption with respect to the aforementioned result.

Proposition 3.13. Consider T > 0 and let u € C°([0,T), H*(M)), with s € R, be a solution of
i+ Agu = h € L*([0,T], H*(M)).

Given py = (z0,&) € TygM, we assume that there exists a 0-order pseudodifferential operator

Y(z, D,), elliptic in po, such that ¥ (x, Dy)u € L*([0,T), H*T¥(M)) for some v < 1/2. Then for

every p1 € ®,,(t), the bicharacteristic ray starting at po, there exists a 0-order pseudodifferential

operator n(z, D,), elliptic in p1, such that n(z, Dy)u € L*([0,T], H(M)). Moreover, there exists
C > 0 such that
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HT/(J;,Dm)U”%Q([O’T]’Hsjtu(M)) < C (Hw(x’Dm)u”%Q([O,TLHS#LV(M))

Proof. First of all, we regularize u by introducing J,, := (1 — #Ag)_l which belongs to ¥~2(M)
for each n € N, and then we set u, := J,u and h, := J,h. Note that u, € C°([0,T], H*T2(M))
and u, — uw in L*>([0,T], H*(M)). We divide the proof in three steps.

Step 1. Commutator estimate. We will carefully choose a time-independent pseudodifferential op-
erator A = A(x, D,) of order (2r — 1) where r = s + v.
Let us denote L = i0; + A. By integration by parts, we have the following commutator identity
(Lttn, A" un) p2(j0,11x M) — (Atn, Ltin) p2 (10,11 M)
. T
= ([4, A]umUn>L2([0,T}xM) + ’(Aunaun>L2(M)‘0 - (3.12)

By construction, A is of order 2r —1 = 2s+2r — 1 < 2s, and so [A4, A] is of order 2r < 2s+ 1. First
of all, we observe that the right-hand side of (3.12) is uniformly bounded with respect to n € N.
Indeed, as (u,) and (hy,) are both uniformly bounded in C([0,T], H*(M) and L?([0,T], H*(M)),

respectively, we get

(A, Lup) 20,11y | = A1 /24U, A1 9Pm) 2| S | Lo (o) | on | L2 (2199 -

We used that A_, /54 is of order 2r — 1 —7r+1/2 =1 —1/2 < s and so, in particular, it maps H*

into L2. The term (Lu,, A*u,) can be bounded in the same way as before. To estimate the terms
at t =T and ¢t = 0 on the left-hand side of (3.12), we note that

[{Aun(T), un(T)) 2| = KA —sAun(T), Astun(T)) 2 (agy| S Hun(T)| s
S Nl Foo o)

and the term (Auy,(0), un(0))12(aq) is bounded similarly. Gathering the above estimates, we get the
following estimate independent of n € N,

T
/o ([A, Alun, wn) L2y dt| S unlZoearey + 1BnlZ2 ey (3.13)

Step 2. Microlocal propagation. Take py = ®(pp). We want to transport a symbol supported near
p1 along the flow generated by p(x,€) = [£|2, up to a remainder localized near pg, which carries
information from pg. Let Vi be a conical neighborhood of p;. Using that the bicharacteristic flow is
time-reversible, by Theorem B7 backwards, there exists a conical neighborhood V; of pg, such that
for any symbol ¢ = ¢(x, &) of order r supported in Vj, which we further choose to be elliptic at py,
we can find another symbol a = a(z, &) of order 2r — 1 such that

FHpa(z,€) = |e(z,6)]” + v(z,6),

where v = t(z,€) is a symbol of order 2r supported in V. Now, we choose A(x, D,) to be a pseu-
dodifferential operator of principal symbol a. If C' and R denote some pseudodifferential operators
whose principal symbols are ¢ and t, respectively, for some K € ¥25~1(M) it holds

[A,A] = C*C + R+ K. (3.14)
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Step 3. FEstimates. By local parametrix Theorem Bb5, there exist a pseudodifferential operator
YT of order 0 elliptic at py and a cutoff x equal to 1 in a conic neighborhood of pg such that
YT (z, D) (z, Dy) = OP(x) + K1 with K1 smoothing. As r is supported in Vg, by symbolic calculus
Theorem B2, we can write

<Run7 un>L2 = <§AS+Vw(x7 Da:)uny A5+V¢<x7 Da:)un>L2 + <K2Un7 Un>L2
where R := A_ (o) (W)*Rd)TA_(SJFV) € WO(M) and K> is smoothing. We thus obtain

[(R(@, Dy )tn, un) 2| S 1190 (@, Da)unlFresw (agy + lnllFre uny- (3.15)
Using identity (3.14) followed by estimates (3.13) and (3.15), we have

T
/0 1€, Dyt 2 g

S0, Da)unl o0 st (may) + enl oo o711 (A1) + 1nllT2 0.7, 255 (1))

uniformly in n € N. Since u,(t) — u(t) in H*(M) for each ¢t € [0,7] and the convergence takes
place in a Hilbert space, we get that C(x, D, )u € L*([0,T], L?(M)) and

T T
|16 Doyl it < timint [0 D i
The proof concludes by taking n(x, D) := A_(44,,)C(z, Dy). O

By a partition of unity argument, we can use the previous result to propagate any gain on
regularity to the whole manifold from any region that satisfies the GCC.

Corollary 3.14. With the notations and assumptions of Theorem 3.13, let w satisfy the GCC and
let C be defined as in (3.8). If u € L*([0,T), H*™"(w)), then u € L*([0,T], H**V(M)) and there
exists a constant C' > 0 such that

el 0,71, 11540 (ayy < CUICUII 20,1, mr5+v () + 1100 71,5 py) + N2 0,77, 115 (0) - (3-16)

Proof. For every p € S* M, the Assumption GCC gives 7 € [0,T) such that pg = ®_;(p) € S*wo.
Since C = b,, is elliptic at pg and Cu € L?([0,T], H*™¥(M)) by hypothesis, Theorem 3.13 yields a
0O-order pseudodifferential operator 7, elliptic at p such that

11, (, DI)UH%Q([O,TLH””(M))

<Cp <||CUH%2([0,T],Hs+v(M)) + [ullEo o7, 10 () + HhH%Q([O,T},HS(M))) - (3.17)
By compactness, we can choose finitely many pq, ..., px such that S*M can be covered by neigh-
borhoods V{°, ..., Vﬁ, where 1;(z, Dy) 1= n,, (7, D;) is elliptic on VjS. For each 7 =1,..., N, let us
define Vj to be a conic lift of Vjs to T* M, that is,
Vi = {(z,6) e LM | (2,€/I€]) € V], [ > 2}

Let (Xj)ﬁv:l C C*(S*M) be a microlocal partition of unity with Z;VZI X? =1 and supp x; C Vjs.
By taking 0 € C*°([0,400) with o(7) = 0 for 7 < 1 and p(7) = 1 for 7 > 2, we can extend x; to
act on Ty M by setting x;(z,&) = o(|€])x; <a:, %) It is indeed a symbol x; € Sohg(T*M) with
supp X; C V; and

N

(%) =1 for ¢] > 2,
7=1
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and it vanishes for || < 1. Let ©; € ¥%(M) be a quantization of Xjc;, where ¢; is the principal
symbol of n;(z, D). Let us define

T:=0i0;+...+ 040N € VM),

which is elliptic and positive. Indeed, given that each 7;(x, D,) is elliptic, the principal symbol of
T satisfies

N N
vr=Y Xlgl? = k) Xj=r>0 for ¢ >2,
Jj=1 j=1
where k := min;j—; _ ny minys |Cj|2. Applying the sharp Garding’s inequality Theorem B6 to A :=
J

Agiv YAy, € T20sHY) (M) and using symbolic calculus, we get

N
”UH%Z([(),T],HHV(M)) S ZH@j(fﬁa D:B)uH%?([O,TLHSJrV(M)) + HUH;([O TLH % (M) (3.18)
i=1 o

By writting, ©; = OP(X;)n; + K; with K; € ¥~1(M), we have

H@j(xvDI)UH%Q([O,T],HHV(M)) S H77j(33aDx)u||%2([o,T],Hs+u(M)) + ”UH%2([0,T1,H~<+V—1(M))-

Since v < 1/2 it holds s +v — % < s, therefore, using (3.17) for each 7; and summing over j, we get

N
> lI8;(x, Da)ulliz o, 1), prs+v (a))
=1
S NCullZz .17, 54w (ay) + 1ullEogo ey + 1alIT20.77, 5ty (3:19)
By plugging (3.19) into (3.18), we get the desired estimate (3.16). O

3.2.2. Nonlinear propagation. We are now in position to prove the nonlinear propagation result.

Proof of Theorem 3.9. First, assume that 0 < v < 1/2. With the aid of Duhamel’s formula, let us
split the solution u into its linear and nonlinear part as

t
u(t) = Py — z/ ei(t_s)Agf(u(s))ds = w)in(t) + uNIin(t).
0

For each n € N, let us consider 7, := (1—%Ag)*1 € U2(M) and let us introduce the regularization
u" := Jnu. Let us also denote by uji and ugy;, the corresponding regularized linear and nonlinear
part of u".

As we will employ the observability later on, let us note that Cu” = CJ,u = J,Cu + [Ty, Clu.
Moreover, we have [7,, C] = #jn[Ag,C]jn. Some computations lead us to || Tnllz(s+v )y < 1
and || Tl g(as (my,ms+2(my) < 1. Further, since [Ag,C] € U'(M) and H¥"H(M) — H(M),
we get that [Ag, C] € L(H*T2(M), H5TV(M)). Therefore, as u € L*([0,T], H**"(M)) due to the
corresponding smoothing effect, we get uniformly in n

n TIn
|Cu HL2([0,T],H8+V) N HCU||L2([O,T],HS+V(M)) + Hjn[AgaC]ﬁ“”Loo([o,T],HHV(M))

S Cull 2,7, 15+ (M) + 1wl oo 0,77, 55 (M) -

Since u € C°([0, T], H*(M)) and we are in an algebra, using Theorem 3.2 (recall that f(0) = 0) we
have || f(w)|lp2(msy < Cllullp2(ms) with C depending only on |||z (jo,71x A1), Which is finite due to
Sobolev embedding. By Theorem 3.14, we get

el 2o 21, 00w () S ICUIT2 0 77 o0 (g + 1l Eoe 0,77, 00ty + 1 @ T2 0,77 0001
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2 2
S NCullz oy, mreer (aayy + Iullzoe o7, 122 (00y)

Let us first prove that uf, is uniformly bounded in L (H*%"). As before, since u(t) €
H**t(M) a.e. t € [0,T] and we are in an algebra, using Theorem 3.2 we have || f(u(t))|| gs+v(rg) <
Cllu(t)|| s+ (aq) ae. t € [0,T], with C only depending on ||ul| e (jo 77x A1) Since L? < L in finite
measure spaces, we obtain

|uRiin |l oo (0,17, 75+ (M) < luntinl| Loo (jo,77, 5+ (M)

/ 1 () s rdt < / ) ooyt S Nl oz o ()

We are now in position to treat the linear part by employing the observability inequality. More
precisely, we use the observability inequality for the linear Schrodinger equation Theorem 3.8, for
any t € [0,7T] we have

HUIi‘n(t)quW(M = [lug | 7gssv

obs / chhn HHS“’dt

T
<202, / 1 ()]t + 262, / | Cuion () 2o

< O(ICulizaqo v (aayy + Nl Lo o1y, 115 an)
where we used all the previous estimates to get the last inequality. As the previous estimate is valid
for each ¢ € [0, 7], it follows that ™ is uniformly bounded in L*°([0,T], H*t"(M)). Moreover, due
to the fact that ||u — u™[| peo((o,1],/r5(Mm)) — O and leveraging that H*(M) is a Hilbert space, we get
that u(t) € H*T (M) and

[w(®) | rev gy < Tminflja” ()] grasv ),

for any ¢ € [0, T], showing that u is uniformly bounded in C°([0,T], H*T*(M)).

If v > 1/2, then we pick 0 < v/ < 1/2 so that kv/ = v for some k € N and iterate the previous
argument k-times with v/ as a parameter to conclude that v € C°([0,T], H**(M)) along with
estimate (3.10). O

3.3. Uniform observability at high-frequency. Our aim in this section is to verify Assumption
3. More precisely, we will prove an observability inequality at high-frequency for the following linear
Schrodinger equation with potential

{ 0w+ Agw = QuDf(v)w in [0,T] x M,

w00) = wn (3.20)

where f := xf with y € C®°(M;R), and wy € Q, H(M).

3.3.1. Propagation of compactness. Upon a straightforward modification of [DGL06, Proposition
15] regarding the Sobolev regularity, we have the following result about the propagation of the
microlocal defect measure which is valid in any dimension.

Proposition 3.15. Let s > 1. Let L = i0; + Ay + Ry where Ro(t,x, D,) is a tangential pseudo-
differential operator of order 0 and (un)n a sequence of bounded functions ||un|| roo (o, 1],1s (M) < C
satisfying

O P P R R L P P
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Then, there exist a subsequence (ug)y of (un)n and a positive measure y on (0,1") x S*M such that,
for every tangential pseudo-differential operator A = A(t,x, D,) of order 2s, with principal symbol

o(A) = ags(t,x,§),
(A(t, z, Dy )ug, ur) p2jo,r)x vy — azs(t, , )du(t, z,§).
k—oo J(0,1)x5*M
Moreover, if ®; denotes the bicharacteristic flow on S*M, one has, for every t € R,
q)t(:u) = M,

namely, p is invariant by the bicharacteristic flow “at fived t’.

3.3.2. Uniform observability. Using the microlocal defect measure we now prove an observability
inequality uniform with respect to the potential for solutions at high-frequency, that is, we verify
that Assumption 3 holds true. First, we verify the observability with potentials.

Proposition 3.16. Let T >0, M >0, d € N and s > d/2 be fized. Let w be an open set satisfying
the GCC and let C be as in (3.8). Then there exist ng € N and C > 0 such that for any Vi,

Vo e BES[’T] (H*(M)) and n > ng, the following observability inequality holds

T
lwol%e < © /0 |Cuo(t)|[3.dt,

for any wo € Q,H*(M), where w € C°([0,T], Q,H*(M)) is solution of

{ 0w + Agw = Q,(Viw + Vow)  in (0,T) x M,

0(0) = o, (3.21)

Proof. Let us momentarily assume that d > 2. We proceed by contradiction. Let us assume that

there exist n; — 400, a sequence of potentials (V1 ;), (Vo) C B[O’T](HS(M)) and a sequence of
solutions (w;); of (3.21) in C([0, T], @n, H*(M)) associated to (V1 ;); and (Vz;); with [[wo j||gs = 1
such that

/ Iy ()3 paydt 0.

The uniform bounds on (wo;), (Vi) and (Vo ) yield that that (w;); is an uniformly bounded
sequence in C([0, 7], H*(M)). Then, since w;(t) € Qn, H*(M) a.e. t € [0,T] we have
llwjll oo o7, =1 (M) < A2 wj | Los (o7, = (M)

from which w; — 0 in L*([0, T], H*~1(M)).
Using that H*(M) is an algebra, we get

[19n; V1 jw;ll oo (0,10, 15 (M) < [1V15w05 [ Lo (0,71, 15 (M) < Ml[wj | Lo jo,7), 15 (1))
We conclude that (Q,,V1 jw;); is uniformly bounded. Hence, in a similar way as before,
1190, Vi jwill 2oz, =1y < Ay 21 Qs Vi jwsll 2oy, 5 ()
and we get that Q, Vi jw; converges strongly to 0 in L*([0,7], H**(M)). Similarly, we obtain
that Qn; Vs w; converges strongly to 0 in L*([0, T], H*~*(M)) as well. We thus have
i0yw; + Aw; = hy; = 0 in L%([0,T], H*~Y(M)),
Cuw; %) 0 in L2([0,T], H5(M)),

J]—00

with h; = an (Vi,jwj + Vo jwj). By Theorem 3.15 we can attach a microlocal defect measure p to
(w;); in L2([0,T), H¥(M)). Further, since wy satisfies the GCC and Cw; — 0 in L2([0, T, H*(M)),
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we get that © = 0 on S*wp and then, by invariance under the bicharacteristic flow, y =0 on S* M.
Therefore w; converges to 0 in L ([0,77], H¥(M)).

Let us pick tg € [0,T] such that w(ty) goes strongly to 0 in H*(M). By uniqueness and lin-
ear estimates, we get that w; converges strongly to 0 in C°([0,T], H*(M)), which contradicts
s (O) -y = 1.

Finally, the case d = 1 follows by applying the above reasoning to w = As_jw. Since A;_1 and
i0; + Ay commute, this allow us to apply Theorem 3.15 with r = 1 and the rest goes in a similar

way. [l
As a corollary we verify that Assumption 3 holds true.

Corollary 3.17. Let T > 0, R > 0, d € N and s > d/2. Let V = BE’T](HS(M)) and x €
C®(M,R). Assume that w satisfies the GCC and let C be as defined in (3.8). Under these
notations, there exists ng € N such that Assumption 3 holds true with §f = —ix f.

Proof. Since multiplying by a smooth function is a bounded linear operator from H*(M) into itself,
let us assume for simplicity that y = 1. If z = x 4+ iy € C, let us define

0.f = %(63” —i0y)f and Ozf := %(&T +i0y) f.

By a slight variation of Theorem 3.4, we get that for any v € BQ’T] (H*(M)), both 0, f(v) and 0z f(v)

belong to BESI’T] (H*(M)) where M is a constant that depends on R, coming from the composition
estimates of 0, f(v) and Oz f(v). Given that we can write

Df(v)w = 0. f(v)w + 0z f (v)w,

the conclusion follows as a direct application of Theorem 3.16 by taking V4 = 0,f(v) and V3
Ozf(v).

Remark 3.18. For instance, if P'(z) = z, which corresponds to a cubic nonlinearity f(z) = |2|?z =
22z, then 0, f(v) = 2v and 9 f(v) = v?, from which follows that D f(v)w = 2|v|?w + v?w.

o

3.4. Finite determining modes. If we drop the analyticity on the nonlinearity, we can still show
that the property of finite determining modes holds for the observed nonlinear Schrédinger equation
(1.1) with regular enough nonlinearity.

Proposition 3.19. Let d € N and s > d/2. With the notations of Section 3.1, assume w satisfies
GCC and that f € C*(C,C). For any Ry > 0, there exists n € N such that the following holds.
Let h € LY([0,T], H*(M)) and g € L*([0,T], H*(M)). Let u and u be two solutions on (0,T) of

i+ Agu= f(u) +h  n[0,T] x M,
u=g n[0,T] Xw,
such that ||u(t)||gs < Ro and ||u(t)||gs < Ro for all t € [0,T]. If Pyu(t) = Ppu(t) for all times
t €10,T), then u(t) = u(t) for all t €[0,T).
Proof. We have already established in Section 3.1 that A satisfies Assumption 1. If we pick s* €

(d/2,s), then z € B[RO(’JT] (H* (M), A) where A is a bounded ball in H*(M). Moreover, A is compact
in H® by Sobolev embedding. From Theorem 3.4, Assumption 2a is satisfied with f := —if. Since
w satisfies the GCC, Assumption 3 is satisfied after Theorem 3.17 with C defined as in (3.8) and

V= Bi[&?(HS*(M), A). Then, we apply the abstract Theorem 2.14 with o* = s*/2 instead of ¢ to
obtain Q,,(u — u)(t) =0 on H** for every ¢t € [0,T]. Since Q,, is a linear bounded operator in both
H*" and H® with H® < H*", the equality holds in H® as well. O
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3.5. Propagation of analyticity. Here we prove the main result for the NLS Theorem 1.1.

Proof of Theorem 1.1. Let wq € w satisfying the GCC [L1.24, Lemma A.14] and let y € C>°(M)
be a smooth compactly supported function whose support is contained in w and x = 1 on wj.

As the Schrodinger equation is observable from wy for any T' > 0 and being analytic is a local
property, it is enough to prove that the restriction of u, solution to (1.1), restricted to any compact
subinterval [§, T — §] with § > 0 is analytic. By translation in time, we can consider it on [0,7 —
26] x M and without loss of generality we can just relabel T'— 2§ by T and assume that analyticity
holds in a neighborhood of (0,7'). Hence, by hypothesis, ¢ € (0,T) — xu(t) € H*(M) is analytic,
and so is t € (0,T) — xOwu(t) € H(M). Let us also assume that ¢t € [0,7] — u(t) € H*(M) is
bounded by some Ry > 0.

By using the equation, we observe that on (0,7") X w we have

Ag(xu) = xf(u) + [A, x]u — ixOpu. (3.22)

Since v € C°([0,T], H*(M)), we readily get that [A,x]u(t) € H*"Y(M) for each t € (0,T).
Moreover, since f is smooth, by Theorem 3.2 we have f(u(t)) € H*(M) — H*"1(M) for each
t € (0,7). Thus, the right-hand side of (3.22) belongs pointwise in time to H*~!. Furthermore,
since t € (0,T) — xu(t) € H*(M) is analytic and bounded by Ry, by Cauchy’s estimates Theo-
rem A1l applied to xdyu and global elliptic estimates applied to (3.22), we get that there exists a
constant C' = C(Rp) > 0 such that

||XUHL2([0,T],H1+S(M)) <C.

We can invoke Theorem 3.9 to obtain that u € BQ;T](HHS(M)) for some Ry > 0.
Let s* € (d/2,s) and let us consider

A:={ve H* M) | [[vlgsm) < Ro},

which is a compact subset of H*" (M) by Sobolev embedding. Observe that u(t) € A for allt € [0, T].

Furthermore, by using the equation we see that dyu in particular belongs to BE%T] (H*~Y(M)) for
some Ry > 0. Let us then introduce

K = {w e BR(H (M) | 100wl 2 (o) < Ra},

which is compact in C°([0, T], H*" (M)) as a consequence of Aubin-Lions lemma (see Theorem A21).
d (H* (M), A)NK. Note that A and K are both stable

Therefore, u belongs to the compact set 81[%)
under the projector P, see Remark 2.19.
By compactness [LLL24, Lemma A.14], once again, let w; € wyp satisfying the GCC and let C

be defined as in (3.8) accordingly. Observe that z = (1 — x)u = 0 on wy, and thus Cz = 0 on
[0,7] x M. Then, by the previous discussion, z € Bg{’)ﬂ (H*" (M), A) N K and it solves

Oz = Az+f(z+b1) + b2 in [0,7],
Cz(t) =0 for t € [0, T,

with A = iA,, C = by, f=—i(1—x)f and

{ by: t€[0,T] — xu(t)€ H (M),
ho: t€[0,T] — [Ag, xu(t) € H (M).

By the regularity properties obtained on u, we see that b € B[RO(’)T] (H (M), A) N K and by €

BE%;T](H s (M), A), for some R3 > 0. By hypothesis, an application of Theorem A19 and compact-

ness, there exists p > 0 so that both h; and he admit holomorphic extensions
{ bi: t€(0,T)+i(—pp) — xult) e H" (M;C?),
ho: t€(0,T)+i(~pp) = [Ag xlu(t) € H (M;C?).
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Moreover, given that Rb; € Bg(’)ﬂ (H*" (M)), by shrinking g > 0 if necessary, by continuity and
compactness, we can assume that Rb1(z) € Bog, (H* (M)) for every z € [0, T] + i[—u, p].

By Theorem 3.4, § satisfies Assumption 2. Then, by Theorem 3.17, for any 0 < T < T there exists

no € N such that Assumption 3 is satisfied with T', 2Ry, no, Bg;%? (H* (M)) and § = —i(1—x) f (with
x of the corollary replaced by 1 — x). In particular, since a function with value in A+ A is bounded

by 3R in the H*" (M)-norm, Assumption 3 also holds on the closed subset B[ﬁ%‘g] (H*" (M), A+ A) C
B, (™ (M)

We are then in position to apply Theorem 1.8 with o, (T, T*) and (Rg, R1) of the theorem replaced
by s*/2, (T,T) and (2R, Rs), respectively. We deduce that ¢ € (0,T) — z(t) € H*" (M) is real
analytic, and so is t € (0,T) ~— u(t) € H* (M).

Since t € (0,T) +— u(t) € H* (M) is analytic, so are t € (0,T) — wu(t) € H* (M) (by
Theorem Al14) and ¢ € (0,T) + u(t) — f(u(t)) € H (M) (by Theorem A4). Using the equation,
we get that ¢ € (0,7) +— u(t) € H**" (M) is analytic. O

3.6. Unique continuation. In this section we consider u solution of the system

{ 10+ Au = f(u) in (0,7) x M,

Dyt = 0 on (0,T) x w, (3.23)

where, we recall from case (B), that the nonlinearity f(u) = P’(Ju|?)u satisfies:
(1) if d = 2 then P is a polynomial function with real coefficients, satisfying P(0) = 0 and the
defocusing assumption P’(r) ——— 4o0;
r—+00
(2) if d =3, then P'(r) = ar + § with a > 0, 3 > 0, corresponding to the cubic nonlinearity.

The purpose of this section is to prove Theorem 1.2 and Theorem 1.3. We also prove the unique
continuation result in an unbounded domain Theorem 1.5 at the end of this section.

3.6.1. On unique continuation for linear Schriodinger equation. We now recall the following unique
continuation result in the context of Schrodinger equations due to Tataru-Robbiano-Zuily-Horman-
der. We refer to [LL19, Theorem 6.5] for a quantitative statement that implies unique continuation.

Theorem 3.20. Let T > 0. Let M be a compact Riemannian manifold with (or without) boundary,
Ay the Laplace-Beltrami operator on M, and

P=id+ Ay +V

with V€ L>®((0,T), W?>*(M)). Assume that V depends analytically on the variable t € (0,T).
Let w be a nonempty open subset of M. Let ug € H*(M) N H (M) and associated solution u of

Pu=0 in (0,7) x Int (M)
Uppp =0 in (0,T7) x OM
u(0) = up.

Then, if u satisfies u =0 on [0,T] X w, then u=0 on [0,T] x M.

Remark 3.21. A sharper unique continuation result was obtained by Filippas, Laurent, and Léautaud
[FLL25], in which the analyticity assumption was relaxed to the Gevrey 2 class.

3.6.2. Unique continuation for the nonlinear equation. We now come to prove Theorem 1.2 and
Theorem 1.3.

Proof of Theorem 1.2. Let u be a solution of (3.23) which belongs to C°([0, T], H*(M)) with finite
Strichartz norms. Since u solves the elliptic equation Aju = f(u) in (0,7) X w and f is subcritical,
by elliptic regularity and bootstrap (see [GT01, Theorem 9.19]) we improve the regularity of u in
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(0,T) x w, which then allows us to apply the propagation of regularity result Theorem 3.10 to
obtain that u is uniformly bounded in C°([0, T], H¥(M)) for any s € (1,2], but fixed. We are then
in position to apply Theorem 1.1 to obtain that ¢ € (0,T) + u(t,-) € H?>(M) is analytic.

Actually, Theorem 3.10 implies that u belongs to C*° ((0, T) x M) Now, set z = J;u and observe
that it solves

10z + Ngz = f'(u)z  on (0,T) x M,
z=10 on (0,7) X w.
Since (t,z) — f'(u(t,z)) is smooth and analytic in ¢, and thus bounded, we can apply Theorem 3.20
to obtain that z = 0. This means that « is constant in the time variable and hence it solves

—Agu+ f(u) =0, ze€ M.
Multiplying by u the above equation and integrating by parts, in the case that P'(r) > C > 0 for

every r > 0, we get
0< / \Vul|?dz = —/ P'(Ju)?)|u?dz < —C’/ lu|?da
M M M

and thus u must be equal to 0. O
The proof in dimension 3 is similar, we just point out the main differences.

Proof of Theorem 1.3. If u is a solution of (3.23) which belongs to X%’b with b > 1/2, due to elliptic
regularity arguments, u is smooth in (0,7") x w and we can thus invoke the propagation of regularity
result Theorem 3.12 to obtain that u belongs to X}ﬁ”’b for v € (1/2,1]. By Sobolev embedding,
it also belongs to CY([0,T], H'™"(M)) and hence t € (0,T) — u(t,-) € H(M) is analytic as a
consequence of Theorem 1.1. By setting z = 0;u, we can apply Theorem 3.20 to obtain dyu = 0 in
(0, T) x M. Multiplying the resulting elliptic equation by @ and integrating by parts we readily get

Og/ |Vu|2dx+a/ |u]2d1:+ﬁ/ lu[*dz =0
M M M

and thus u = 0. OJ

3.6.3. Unique continuation on unbounded domains. Here we provide an example of unique contin-
uation for the NLS in an unbounded domain. Let (R?, g) where the Riemannian metric g satisfies
Vo € R? mld < g(x) < M1d
Vo € N2, 3C, > 0,Vz € R?  |0%(z)| < C,.

After [BGT04, Theorem 5], without any further geometric assumption g, it is known that the
Schrédinger equation enjoys the same Strichartz estimates as Theorem 3.5. Let us consider

i0wu+ Agu= P'(Jul®)u  (0,T) x R?,

Oyu =10 (0,T) X w,

where w satisfies the GCC. After [BGT04, Remark A.5], we consider solutions to (3.24) which
belong to the analogous space Y7 in the same fashion as Theorem 3.6 in the compact case.

(3.24)

Proof of Theorem 1.5. To ease notation, from now on we will write f(u) = P’(|u|?)u. Up to making
R > 0 larger, we can assume that R?\ B(0, R) € w. Since dyu vanishes on (0,T) x (R?\ B(0,R)) C
(0,T) x w, we have —Au + f(u) = 0 with u € H'(R?\ B(0, R)). Since f is subcritical, we can use
elliptic regularity and bootstrap (see, for instance, [GT01, Theorem 9.19]) to show that u = u(x)
belongs to C* in the set R?\ B(0, R). By Sobolev embedding and iteration, it belongs to H* on
R?\ B(0, R) for every k € N.
Let us consider r; > R and a cutoff function y € C°(R?) such that
e y=1in B(0,R),
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e x =0inR?\ B(0,r),
e supp Vx C B(0,71) \ B(0, R).

We follow the same strategy as before. As (1 — x)u is supported in R?\ B(0, R) and does not depend
on the time variable, it is analytic as a map from ¢ € (0,7) into H*(R?) for any s € (d/2,2]. By
writing u = xu + (1 — x)u, it remains to prove that z := yu is analytic.

Step 1. Reduction to a fundamental domain. Let us take Ry > ro > r; > R and let us introduce
the square

TR, = {(a:l,xg) € R? ’ x; € [—Rl,Rl], 1= 1,2},

which obviously contains the balls of radius R, r1 and ro. First, let us consider cutoff function
Y € C*(R?,10,1]) such that

o ¥ =1in B(0,r1),
e y =0in Tg, \ B(0,r2),
e supp V) C B(0,75) \ B(0,m1).

If gewe denote the euclidean metric in R2, we set a new metric by g1 = 1g + (1 — 1) geue. This metric
is smooth satisfies g1 = g on supp x Usupp Vx C B(0,71) and coincides with the euclidean metric
Jeue outside of the ball B(0,rs).

Let wy = Tr, Nw. Let ¥ € C*°(R?) be another cutoff with the same properties as y and x¥ = 1
on supp(x). Since the operator f is local, we have x f(u) = x f(xu). Also, since g1 = g on B(0,71),
which is where 2 is supported, in Tk, we have Ayz = Ay, z and thus the local Sobolev norm coincides
there. Then z := yu satisfies

iatz'i_AngZXf(z—i_bl)—’_hQ (OvT) XTRl?
8t22 =0 (O,T

where we have set

{ bi: te€[0,T] — (1—x)xu(t) € H*(Tg,),
ho: te€[0,T] — [Ayxlu(t) € HX(Tr,).

This is indeed consistent since both (1—x)xu and [Ag, x]u are supported in B(0,71)\ B(0, R) € Tg,
where they do not depend on the time variable and enjoy higher regularity in space, say H?(IR?).

By hypothesis « has finite Strichartz norms, which we can use in a similar way to what is
done in the compact boundaryless case (see [BGT04, Remark A.5]), to obtain that P’(Jul?)u €
L2([0,T], HY(R?)) and in particular, xP'(Ju[?)u € L2([0,T], H'(R?)). The latter translates into
xf(z+h1) € L*([0,T), H (Tr,)) (recall that x = 0 outside B(0,71)).

Step 2. Periodic extension. Since outside the ball B(0,r2) and up to the boundary of T, we have
g1 = geue and the euclidean metric is translation-invariant, we can construct a manifold (772, g) with
fundamental domain T, and equipped with the inherited metric g whose projection coincides g;
in the fundamental domain. Note that our choice of cutoffs ¢, x and Y are consistent, in the sense
that the solution z is supported in B(0,71) where the metric g is active and vanishes elsewhere,
and g1 transitions smoothly in regions. We can then consider a periodic extension of z, that is,
2P 0,T] x T? — C is defined by 27 (-,z) = z(-,2*) where 2* is the unique representative of x
mod Tg,, and since supp z € Tk,, the periodization z* belongs to C°([0,T], H*(7?)). Reasoning
likewise for the remaining functions, we see that 2z solves

i0i2" + D2 = XPFET+07) +05 (0,T) x T2,
oz =0 (0,T) x &,
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where @; is the periodization of wy into 72 and
o s t€0.7) — ((1-)Fw)" (1) € H(T?),
by t€[0,T] — ([Ag,xJu) (t) € H*(T?).

First, since w satisfies the Assumption GCC in (R?,g) and R?\ B(0,R) € w, so does @; on
(7T2,9). Indeed, on the set K = Tg, \ w1, the active metric is g and thus every geodesic starting
there must enter w; in finite time and any other geodesic starting outside K is already on the
observation zone. Second, since the local Sobolev H'-norm in the support of xf is determined by
g, we get that xf(2¥ +b¥) € L2([0,T], H'(T?)). Since the metric g; = g on the support xf, the
local H'-norms computed with g and g; coincides there we have

I f (" + 0D 201,572y = IXF (2 + 00| 20,771,851 (T, )

<|Ixf ()|l 2qo,7), 51 (r2))-
This suffices to apply a slight variation of Theorem 3.10 with extra regular parameter (see [DGLOG,
Section 3]), which allows us to propagate regularity, obtaining 2’ € C°([0,T], H*(T?)). We are
then in the configuration of Theorem 1.8. As we did in the proof of Theorem 1.1, we get that
t € (0,T) — 2P(t) € H*(T?) is real analytic and thus we can proceed we did in Theorem 1.3 to
obtain that 2! is independent of t. By projection into the fundamental domain, we obtain that
t € (0,T) + xu(t) € H*(Tg,) is real analytic.

Summarizing, by going back to u = yu+(1—x)u, we have proved that ¢t € (0,T) + u(t) € H*(R?)
is constant and thus —Agu + P'(|u[?)u = 0 in R%. For any xo € R? and 7 > 0 we have then

0< / |Vu|*dz = —/ P'(|u)?)|ul?dz < —C/ lul?dz.
B(zo,r) B(zo,r) B(zo,r)

Therefore, u = 0 on B(xg,r) and being both zy and r arbitrary, we conclude that u = 0. O

APPENDIX A. ANALYSIS TOOLS

A.1. ODEs in Banach spaces. We now introduce the two different notions of ODEs in Banach
spaces used in the present article. Let us consider the framework of Section 2 and let I C R be a
nonempty interval and take sg € I.

For any s € R, we can easily extend e*4 to C°([0,77], X7) by the formula

[eSAV] (t) = eSAV(t),
for Ve C°([0,T], X?). It H € L' (1,C°([0,T],X?)), we say that £ € C° (1,C°([0,T], X)) satisfies

d

{ T€(s) = Agls) + H(s), sel, A1)
£(s0) = &o,

with & € C°([0,T], X?), if it satisfies

£(s) = els—s0)Ag, 4 / WAL (w)dw, Vs € 1, (A-2)

S0

with equality in C°([0, T], X).
Lemma Al. If H € L' (I,C°([0,T], P, X)) and £ € C° (1,C°([0,T],PrX?)) for somen € N and

satisfies —&(s) = A&(s) + H(s) in the previous sense. Then, it satisfies this equation in the sense
of Cauchy-Lipschitz.

Proof. It follows as an application of Duhamel’s formula. O
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Lemma A2. For T1 < T, let us consider T € (0,7 — T1), n € (0,72 — T —T31) and I :=
[Ty —n,To — T —n]. Let G € C°([T1,Ty], X°) and assume that V € C°([Ty,Ty], X°) is a mild
solution of

d

{ SV(t) = AV() +G(t)  for te[T1,T)

V(TY) = V.

If we define &, H € C° (1,C°([0,T],X7)) by &(s) = V* and H(s) = G* with
E)t)=V@t)=V(t+s+mn) and H(s)(t)=G°(t)=G({t+s+n),

forall s € I,t € [0,T1], then, for any so € I, £ is solution in the sense of (A.2) of

{ Le(s) = Ac(s) + H(s), sel.
&(s0) = o,

with & =V = V(- + 5o+ ).

Proof. By Duhamel’s formula, for all ¢ € [T}, T>] we have

t
V(t) = eETAY) + / =NAG(T)dr.
T

with V(T1) = Vi. Pick sg € I. First observe that, for any ¢ € [0,T],

t+so+n
V(t+ so+m) = elTornToay, 4 / e(tHs0t1=DAG(r)dr
T
Then, for s € I and t € [0, 7],
t+s+n
V() = V(t+ s +n) = Ty, / e t=IAG (1) dr
T

= eBT0AY (¢ 4 59 4+ 1) + / eSAG(t 4+ w + n)dw

50
= e(s_so)AVSO(t) —l—/ e(s_w)AGw(t)dw.
50

So, since this is true for any ¢ € [0, 7], it gives

Ve = els—s0)Ayso 4 / e=WAGU gy, Vs € T.

S0

By hypothesis, this equality holds in C°([0,T], X?), and is exactly (A.2), as we wanted to prove. [

A.2. Complex analysis in Banach spaces. Let E and F' be Banach spaces over the same field K,
with K being either R or C. Along this appendix, we will introduce several notions of differentiability
and analyticity needed to unify the different results used throughout the present article.

We first start with a notion of differentiability in Banach spaces, often referred to as Fréchet
differentiability.

Definition A3. Let U be an open subset of E. A mapping f : U — F is said to be K-differentiable
(or just differentiable) if for each point = € U there exists a mapping A € L(E, F') such that

o LG+ R) — £(@) = Ablle
h—0 P>

Such map A is called the derivative of f at x and it is denoted by D f(x).

0.
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We can rephrase the above definition as follows: for each z € U there exists a mapping A €
L(E, F) such that

flx+h)= f(x)+ Ah + o(h)

where o(h)/||h||g — 0 as h — 0. With this formulation at hand, we state the chain rule in this
setting.

Theorem A4. [Muj86, Theorem 13.6] (Chain rule) Let E, F' and G be Banach spaces over K.
Let U C E and V C F be two open sets and let f: U — F and g : V — G be two differentiable
mappings with f(U) C V. Then the composite mapping go f : U — G is differentiable as well and

D(go f)(z) = Dy(f(x)) o Df(x) for every x € U.

We now come to introduce the different notions of holomorphic or analytic maps that have been
used throughout the present article. A mapping P : F — F is said to be an k-homogeneous
polynomial if there exists a k-linear mapping A : E¥ — F such that P(x) = A(x,...,z) for every
x € E. We represent by P(¥E, F') the Banach space of all continuous k-homogeneous polynomials
from F into F' under the norm

IPlpep,rpy =sup{l|[P@)|Fr |z € E, [lz]p <1}

A series Y 72 fi of homogeneous polynomials f, € P(*E, F) will shortly be called a formal series
from E to F. The space of all formal series with continuous terms will be denoted by S(E, F'). We
say that a formal series Z}io fj converges in a set U C F if for every x € U the series Z;io fi(x)
is convergent.

Definition A5. Let U be an open subset of £ and K = C (resp. R). A continuous mapping
f U — F is said to be holomorphic (resp. analytic) if for each x € U there exist a series
> 50 fj € S(E, F) such that

flx+h)=)" fi(h)
j=0

for all A in a neighborhood of 0 € E. We shall denote by H(U, F') the vector space of all holomorphic
mapping from U into F.

Remark A6. The sequence (f;) which appears in the above definition is uniquely determined by f
and x. We then shall write f; = f;(x) for every j € Ny.

The previous definition has been taken from [BS71a] and [Muj86]. Observe that here we have
reserved the concept holomorphic for the complex case and analytic for the real case. When going
through the literature, it is often the case that holomorphicity is introduced with a different defi-
nition. We will introduce these notions and then we will establish that they are equivalent. From
now on, assume that K = C, unless we say otherwise.

Definition A7. A mapping f: U — F is said to be:
(1) weakly holomorphic if ¢ o f is holomorphic for every ¢ € F* where F* is the dual space of
F;
(2) G-holomorphic if for all z € U and h € E, the mapping ¢ — f(x + (h) is holomorphic on
the open set {( € C |z +Ch e U}.

The following theorem shows that one of the most important features of the complex analysis
still holds when working with functions between complex Banach spaces.

Theorem A8. [Muj86, Theorem 8.12, Theorem 8.7, Theorem 13.16] Let U be an open subset of
E, and let f: U — F. The following statements are equivalent:
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(1) f is C-differentiable,

(2) f is holomorphic,

(8) f is weakly holomorphic,

(4) f is continuous and G—holomorphic.

For a given x € U and h € E, let us denote by p(x,h) the supremum of all numbers p such that
|| < p implies z + Ch € U.

Theorem A9. [Muj86, Theorem 7.1, Corollary 7.3] (Cauchy integral formula) Let U be an open
subset of E, and let f € H(U,F). Let x € U, h € E and r < p(x,h). Then for each A € D(0,r) we
have

1 f(x+Ch)
flz+ Ah) = 3 /|< I —d(,

where |¢| = r denotes a circle of radius r an center at the origin in the complex plane. Moreover,
for each 5 € N we have

1 f(x+Ch)

2mi g O

fi(z)(h) = dg.

Let f € H(U, F'). We can expand f(z + Ah) as

f(z+ \h) = ij AR) = "N fi(z)(h)
j=0

which holds uniformly for |A| < r with 0 <r < p(x,h). For z € U we may define the nth variation
0" f(z, h) of f(x) with increment h as

n dn

1) = | o+ on)
¢=0

It can be seen that §" f(x,h) is homogeneous of degree n in h. Moreover, looking at the Taylor

development of the holomorphic map A € D(0,r) — f(x + Ah) € F, in view of the previous result,

it follows that
5 F(w, ) = / fatch) e (A.3)
I<l=

27 ¢mtl
Remark A10. Formula (A.3) does not depend on the chosen r < p(z, h).
The above discussion leads us to the classical Cauchy estimates.

Proposition A11. [Muj86, Corollary 7.4] (Cauchy estimates) Let U be an open subset of E, and
let feH(U,F). Letx €U, h€ E andr < p(z,h). Then for each n € N we have

[6" flx)(h)] < 7" s 1/ (@ + Ch)|l.

Remark A12. Actually, it is possible to have the Cauchy estimates locally around any point x € U
or even uniformly in a ball (by assuming that f is bounded in there). Let us argue for the former
case, the latter being similar. By continuity, there exists r, > 0 such that || f(z)|| < M for all z € U
such that ||z — z|| < 1y, where M = M(z) > 0 is a bound that depends on z. Let h € E. Thus, for

z such that ||z — z|| < r;/2, we have z + (h € U for any \C\ < 2||h||’ since

Iz + Ch —zf| < [lz = z[| + [|A]] < 18l =

2HhH
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and so z+ Ch € B(x,ry) C U. Due to the Cauchy estimates

sl < () sy e+ cn<ar ()

Tz T
<=3
The previous estimate holds uniformly on ||z — x| < r*, for any 7* < 7.

A.2.1. Some reqularity results. Here we state some useful regularity results that are used throughout
Section 2. First, we have the following characterization of holomorphic mappings whose domain is
an open set in a product of Banach spaces.

Proposition A13. [Muj86, Proposition 8.10] Let E1,..., E, and F Banach spaces, and let U be
an open subset of F4 X ... x E,. Then a mapping f : U — F is holomorphic if and only if f is
continuous and f(Ci,...,Cn) is holomorphic in each (; when the other variables are held fized.

We can say the following in regards to the regularity of the n-th variation of f.

Proposition A14. [BS71a, Proposition 6.4] Assume K = C (resp. R). If f : U — F is holomorphic
(resp. analytic), then for every n € N the function

"f:(x,h) e Ux Evr— §"f(z)(h) € F
is holomorphic (resp. analytic).
Proposition A15. [Muj86, Exercise 8.E.] Let E, F', G be Banach spaces, let U be an open subset
of E, and let f : U — L(F,G). The following conditions are equivalent:
(1) f is holomorphic.

(2) The mapping x € U — f(x)(y) € G is holomorphic for each y € F.
(3) The function x € U — n(f(z)(y)) € C is holomorphic for each y € F andn € G'.

Let Isom(E, F) C L(E,F) be the space of invertible linear continuous maps from E into F.
Let J : Isom(E, F) — L(F,E) be the map J(u) = v~ € Isom(F, E). As a consequence of the
Neumann series (see [Car(67, Theorem 1.7.3]) we can establish that J is an analytic map in suitable
neighborhoods of bijective maps. Indeed, for any L € L(E, F) on an e-neighborhood of a bijection
T € L(E,F) with 0 <e < 1/||T7!||, then L~ € L(F, E) and

L =(I-TYT-1) ' = i (T~T - L)' = imk(T — L),
k=0 k=0

where my, is defined by
1 _ - _ _
mk‘(Lla"',Lk):H ZT 1oL7r(1)oT IOLW(Q)O...OT 1oLW(k)oT L
'7T€Sk

with the summation being taken over all k! permutations of {1,...,n}. This shows that J: L+ L™!
from Isom(F, F) into Isom(F, E) is K-analytic on the neighborhood of T" given by the previous result.

Lemma A16. Suppose T € L(E,F) is a bijection. Then for any 0 < ¢ < 1/||T7!| such that
if L € L(E,F) and |T — L|| < ¢, then L' € L(F,E). Moreover, 3 : L — L™ as a map from
Isom(E, F) into Isom(F, E) is K-analytic on any of these e-neighborhood centered at T
A.2.2. On the complexification. Let E and F be real Banach spaces. The canonical complexification
Ec = E+iFE is a complex Banach space equipped with the norm whose square is ||z + in%C =
lz||% + llyl|%. If A€ L(E,F) is a bounded linear operator, its complexification is

Ac(z +iy) := A(z) +iA(y), =,y € E.

Note that Ac € L(Ec, Fr), where the latter denotes the space of C-linear bounded operators from
FE¢ into Fr with the inherited complex structure.
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Lemma A17. It holds L(Egc, Fr) ~ L(E, F)c as complex Banach spaces and the map
\I/E—>F : ﬁ(E,F)(C — ﬁ(Ec,F(c)
A+1iB —— Ac+iBg,
1s C-linear isometric isomorphism in between Banach spaces.

Proof. Since the spaces F and F' are fixed, we drop the subscript £ — F'. Under the identification
Ec=F+iFE and Fr = F +iF, we see that ¥ acts as

(é _AB> : (z,y) — (Ax — By, Bx + Ay).

With this at hand is not hard to see with some algebra that U(S)¥(T) = ¥(ST) for any T €
E(E,F)(C and S € ﬁ(F, G)(C

Let us denote by tg : E — Ec the embedding ¢(x) = z + i0 and define ¢ similarly. Let &,
€2F € L(Fg, F) be the bounded R-linear projectors

EF(u+iv) =u and &F (u+iv) =v.
Given T € L(Eg, F¢), we define A := &l Tvp and B := E' T, both of them belonging to L(E, F).
For any z,y € I/ we have
T(z) = Ax +iBx and T(iy) =iT(y) = —By + iAy.
Hence, the C-linearity of T" forces
T(x +1iy) = (Ax — By) +i(Bx + Ay), Vx,y € E.

This means that 7= WU(A + ¢B) and thus ¥ is onto.
For T' = U(A + iB) and under the block-matrix identification of ¥, some algebra along with a
trigonometric change of variable, lead us to

| VA2 = Byl} + | Bz + Ay} |
||‘I/(A+ZB)HL(EC,FC): sup = sup HACOSH—BSIHHHL(E,F).

wuct el + il ocfo.r

Since the canonical complexification norm on L(E, F')¢ is defined so that

1A+ iBllere = sup [lAcost — Bsinbloe.r),
0€[0,27)

we conclude that ¥ is an isometric isomorphism of Banach spaces. O
Let (E,(-,-)r) be a real Hilbert space. Its canonical complexification Ec = E 4 iE is a complex
Hilbert space equipped with the inner product
(U, V) Be = (z1,91) B + (T2, y2)E + ({2, ¥1) B — (21, 42) B),

with © = z1 +ix9 and y = y1 + iye. If (F,(-,-)r) is another Hilbert space, we can introduce the
bounded linear map Adj: L € L(E,F) — L* € L(F, E), see [Brell, Remark 16]. Here the adjoint
is taken with respect to the real structure of £ and F.

Lemma A18. The map Adj admits a holomorphic extension de from L(E¢, Fr) into L(Fg, Ec).

Proof. Since Adj is bounded and linear, it can be extended as a holomorphic C-linear map from
L(E,F)c into L(F, E)c, by Adj(L1+iLa) = L} +iL% where the adjoint is taken with respect to the
real underlying structures of £ and F'. Then A\d/J = Up_poAdj 0\11;31_> - is the desired holomorphic
extension. 0

Through complexification of the underlying spaces, the following theorem permits to treat a real
analytic function as a restriction of some holomorphic function.
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Theorem A19. [BS7la, Theorem 7.2] Assume K =R. For any analytic function f: U — F one
may find an open subset V' of Ec and a holomorphic function f :V — F¢ such that U C V and

o =1

A.3. Analysis tools. The following result, known as the Uniform Contraction Principle, elucidates
the regularity that can be obtained for a parameter-dependent fixed point.

Theorem A20. [CH82, Theorem 2.2] Let U, V be open sets in Banach spaces X, Y, let U be the
closure of U, T : U x V.— U a uniform contraction on U and let g(y) be the unique fized point of
T(y)inU. IfT € CF(U xV,X), 0 <k < oo, then g(-) € C¥(V, X). If there is a neighborhood Uy
of U such that T is analytic from Uy x V to X, then the mapping g(-) is analytic from V to X.

Observe that the definition of analyticity used in [CH82] combines G-analyticity and weakly
analyticity. From Theorem A8, these notions of analyticity are equivalent.
We recall the following classical Aubins-Lions lemma.

Theorem A21. [BF13, Theorem I1.5.16] Let By C By C By be three Banach spaces. We assume
that the embedding of By in By is continuous and that the embedding of By in By is compact. Let
p, r such that 1 < p,r < 4o00. ForT > 0, we define

B, - {v e 17([0,T), Bo) | % e Lr([O,T],Bg)} |

(1) If p < 400, the embedding of E,, in LP([0,T], By) is compact.
(2) If p= +o0 and if r > 1, the embedding of E,, in C°([0,T], B1) is compact.

APPENDIX B. PSEUDODIFFERENTIAL OPERATORS

Let M be a compact boundaryless smooth connected Riemannian manifold of dimension d.
For each x € M we denote by T, M the tangent space to M at x and by T;M its dual space,
the cotangent space to M at . Let # : TM — M and 7 : T*M — M denote the canonical
projections into the manifold. We denote by (-,-)z = (-, -)1:am,1,Mm the duality bracket at z. The
manifold M is equipped with a Riemannian metric g, meaning that for any x € M, g, is a positive
definite quadratic form on T, M depending smoothly on x. This Riemannian metric induces an
isomorphism T, M — T*M defined as v +— v° := g, (v, ), with inverse v = (v”)!. The metric g on
TM induces a metric g* on T* M, canonically defined by g%(&,n) = g.(¢%,n%) for x € M and ¢,
n € Ty M. We denote by S*M the Riemannian cosphere bundle over M, with fiber x € M given
by {€ € TM | gi(£,&) = 1},

For classical references on pseudodifferential operators, see [Hor85, Shu0O1]. Here below we follow
the presentation of [Lef25].

B.1. Definitions. Let X C R? be an open subset. We say that a € S/ (X x R?) if ¢(z)a(z, &)
belongs to the usual class of symbols S™(R? x R?) for every ¢ € C2°(X). We consider a quantization
OP(a), defined as a map from C2°(X) into D'(X) whose Kernel is given by

1 .
Kla.) = gz [ 07 ae. ).

d
3

The set consisting on such quantizations OP(a) of symbols a € S™(X x R?) is called the class
of pseudodifferential operators of order m and is denoted by W™ (X). This choice of quantization
is not unique. The class of smoothing pseudodifferential operators W~°°(X) corresponds to the
quantization of symbols a € S™®(X x R?) := N,,,crS™(X x RY).

Any diffeomorphism  : U ¢ M — X C R? induces a map £* : C®°(T* M) — C°(T*U) defined
by & (2, €) = @((x), di(z) 7€),
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Definition B1. The class ¥ (M) of pseudodifferential operators of order m is defined as the set
of continuous linear operators A = A(x, D;) : C*°(M) — C*°(M) such that:
e For any y, X’ € C°°(M) with disjoint support, xAx’ is smoothing.
e For every chart (k,U), for every x,x’ € C°(U), the operator Ay, , 1= kX' Axr* belongs
to U (X).
The set W} (M) of polyhomogeneous pseudodifferential operators of order m is defined likewise

by considering instead the class W7} (X)) in the latter property.

The symbol space S™(T*M) consists of those functions a € C°°(T* M) such that for any chart
k:U— X CRY (k7 1)*a € S(X x RY).

We say that a family (s, U;)Y, is a family of cutoff charts if Uf\i 1 Ui = M covers M. For a given
family of cutoff charts, we consider a partition of unity Zfi 1 Xi = 1 subordinated to that cover, as

well as other cutoff functions x; € C2°(U;) such that supp x; € {x; = 1}. A quantization procedure
is a map Op : S™(T* M) — ¥ (M) given by

Or(a)u =Yk ((53) X, OPza( (7). (i) (k) i)

=1
where OPg» is a previously chosen quantization on R?. This way, by [Lef25, Proposition 5.2.14], ev-
ery A € Wi, (M) is of the form Op(a)+ R where a € S™(T"M) and R € U™>°(M). Also, given A €
U™ (M), its principal symbol o4 € S™(T* M) is well-defined and belongs to S™(T*M)/S™ 1 (T* M).
We recall the algebra of pseudodifferential operators in the following proposition.
Proposition B2. [Lef25, Theorem 5.2.16, Lemma 5.2.17| The following holds:
(1) If A € ¥"™ (M) and B € ¥"2(M), then AB € $™T"2(M) and 0 o = OACB = OBoA.
Additionally, [A, B] € ¥m™i+m2=1 gnq O[A,B] = %{UA,O'B}.
(2) If C € ¥"™(M), then C* € V" (M) and oc+ = ¢
Regarding their mapping properties, we have the following.
Proposition B3. [Lef25, Theorem 5.4.9] Let A € U™ (M). Then, for every s € R, A : H*™™(M) —
H#(M) is bounded. In particular, if K € ¥~°°(M), then for all s, t € R, K : H(M) — HY(M) is
bounded.

B.1.1. Invertibility and positivity. Let Ty M denote the cotangent bundle of M with the zero section
removed.

Definition B4. An operator A € ¥ (M) is elliptic at (zg,&p) € T; M if there exists C' > 0 and a
conic neighborhood V' C T* M of (z9,&y) such that for all (z,£) € V and ||, > C

loa(z, &) = (§)™/C,
We say that A is elliptic if it is elliptic on T M.
The following lemma states the existence of a local parametrix.

Lemma B5. [Lef25, Lemma 5.3.11] Let A € W™(M) be elliptic at (z9,&0) € TGM. Then, there
exists B € W™™(M) elliptic at (xq,&) € T*M, x € SY(T* M) equal to 1 in a conic neighborhood
of (zo,&0), and K1, Ko € ¥=°°(M) such that

AB = Op(x) + K1, BA=0p(x) + K.
Theorem B6. (The sharp Garding’s inequality) [Lef25, Theorem 6.1.9] Let A € W5} (M) with
m >0 and assume that R(c4) > 0. Then, there exists a constant C > 0 such that

o 2
R{Aw, u) 20y = CHUHHmZ—l(M)-
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B.1.2. Symbol transport. Let p(z,&) = €2 = gi(£,€) € C®°(TgM) and denote by H,, and ®; the
associated Hamiltonian vector field and flow, respectively, meaning that

%@t(p) = Hy(®4(p)), Po(p) =peT*M,

which, in local charts can be expressed by H, = V¢p -V, — Vup - V. The following result tell us
how symbols can be transported along the Hamiltonian flow associated to p.

Lemma B7. [Laul4, Lemma 3.1] Let pg € TgM . Then, for any p1 = ®¢(po) and Vi a small
conic neighborhood of p1, there exists a neighborhood Viy of py such that for any symbol ¢ = ¢(z,§)
homogeneous of order s supported in Vy, there exists another symbol b = b(x,&) homogeneous of
order s — 1 such that

Hpb(xaé) = C($,f) + t(l’,&)

where v is of order s supported in V.
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