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Abstract. In this article we prove global propagation of analyticity in finite time for solutions of
semilinear Schrödinger equations with analytic nonlinearity from a region ω where the Geometric
Control Condition holds. Our approach refines a recent technique introduced by Laurent and the
author, which combines control theory techniques and Galerkin approximation, to propagate ana-
lyticity in time from a zone where observability holds. As a main consequence, we obtain unique
continuation for subcritical semilinear Schrödinger equations on compact manifolds of dimension 2
and 3 when the solution is assumed to vanish on ω. Furthermore, semiglobal control and stabi-
lization follow only under the Geometric Control Condition on the observation zone. In particular,
this answers in the affirmative an open question of Dehman, Gérard, and Lebeau from 2006 for the
nonlinear case.
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1. Introduction

The aim of this article is to study how, for a certain class of evolution PDEs, properties observed
from a subset ω ⊂ M over the time (0, T ) are propagated to the whole solution on (0, T ) × M.
Here, M can be, for instance, a compact Riemannian manifold without boundary. More precisely,
we will study the following two properties:

(1) Propagation of analyticity: if the solution is analytic in time on (0, T ) × ω, is the full
solution analytic in time on (0, T ) ×M?

(2) Unique continuation: if the solution is zero on [0, T ] × ω, is the solution identically zero
on [0, T ] ×M?

We refine the method introduced in [LL24] by broadening the class of admissible nonlinearities, thus
extending its scope to a wider class of conservative equations. This method relies on observability
estimates, a Galerkin procedure, and the interaction of low and high frequencies through the nonlin-
earity. We provide an abstract result, detailed in Section 1.2, that allows us to propagate analyticity
in time from the observation to the full solution. We present the main applications to nonlinear
Schrödinger equations, where, notably, we obtain global unique continuation under the Geometric
Control Condition and give applications in control theory, see Section 1.1. We believe that the
abstract method could be applied to several other systems and is amenable to generalizations.

To motivate the abstract result, we begin by describing the case of nonlinear Schrödinger equa-
tions.

1.1. Main results on nonlinear Schrödinger equation. Let (M, g) be a compact boundaryless
smooth connected Riemannian manifold of dimension d. Let ∆g be the Laplace-Beltrami operator
on M associated to the metric g. In this section we consider the semilinear Schrödinger equation{

i∂tu+ ∆gu = f(u) in (0, T ) ×M,
u(0) = u0,

(1.1)

where u : [0, T ]×M → C and the nonlinearity f : C → C is real analytic with f(0) = 0. We assume
that u0 ∈ Hs(M), where:

(A) If there is no further assumption, we set s > d/2, which ensures that Hs ↪→ L∞.
(B) Let 1 < d ≤ 3 and assume f to be of polynomial type, particularly f(u) = P ′(|u|2)u where:

(B-1) if d = 2 then P is a polynomial function with real coefficients, satisfying P (0) = 0 and
the defocusing assumption P ′(r) −−−−→

r→+∞
+∞;

(B-2) if d = 3, then P ′(r) = αr+β with α > 0, β ≥ 0, corresponding to the cubic nonlinearity.
In any of these cases, we choose s = 1 as the level of regularity.

We will assume from now onward that the observation set ω ⊂ M is open and non-empty.
Moreover, we will impose that ω satisfies the Geometric Control Condition:

Assumption GCC. There exists T0 > 0 such that every geodesic of M traveling at speed 1 meets ω
in time t ∈ (0, T0).

Our first main result is the following, corresponding to case (A).

Theorem 1.1. Let d ∈ N and s > d/2. Let u ∈ C0([0, T ], Hs(M)) be a solution of (1.1). Assume
that the above setting holds and assume moreover that:

(1) ω satisfies the GCC,
(2) t ∈ (0, T ) 7→ χu(t, ·) ∈ Hs(M) is analytic for any cutoff function χ ∈ C∞

c (M) whose support
is contained in ω.

Then t 7→ u(t, ·) is analytic from (0, T ) into H2(M).
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The main consequence of this propagation of analyticity in time is the following unique contin-
uation property for solutions of (1.1), notably, in the H1-subcritical cases detailed in (B). First, in
dimension d = 2, for solutions with finite Strichartz norm in the sense of [BGT04, Theorem 2] (see
Section 3.1.1 below for precisions), the structure of the nonlinearity dictates the type of equilibrium
we will obtain.

Theorem 1.2. Let d = 2. Assume that ω satisfies the GCC and that f is given as in (B-2). If one
solution u ∈ C([0, T ],H1(M)) of (1.1) with finite Strichartz norms satisfies ∂tu = 0 in (0, T ) × ω,
then ∂tu = 0 in (0, T ) ×M and u is an equilibrium point of (1.1), that is, solution of

−∆gu+ P ′(|u|2)u = 0, x ∈ M. (1.2)

Moreover, if there exists C > 0 such that P ′(r) ≥ C for r ≥ 0, then u = 0 in (0, T ) ×M.

In dimension d = 3, let (M, g) be any of the following manifolds:

• T3 or the irrational torus R3/(θ1Z× θ2Z× θ3Z) with θi ∈ R,
• S3 or S2 × S1.

The analysis of the NLS in the subcritical case uses Bourgain spaces, see Section 3.1.1 for precisions.
We get the following unique continuation property.

Theorem 1.3. Let d = 3 and let (M, g) be any of the manifolds described above. Assume that ω

satisfies the GCC and that f is given as in (B-1). Let 1/2 < b ≤ 1 and u ∈ X1,b
T be a solution of

(1.1) which satisfies ∂tu = 0 in (0, T ) × ω. Then u = 0 in (0, T ) ×M.

Remark 1.4. More generally, it is most likely true that the above unique continuation result holds
under the more general bilinear estimates Assumption WP on (M, g). Indeed, although not written
explicetly in the hypotheses of the corresponding results in [Lau10b], the microlocal propagation
machinery applies under such an assumption, which are precisely what we need to treat the low
regularity framework. In particular, any of the aforementioned manifolds with d = 3 satisfy As-
sumption WP.

Our unique continuation result allows us to obtain some results in non-compact domains. For in-
stance, we can obtain a result for (R2, g) equipped with a smooth bounded metric g, see Section 3.6.3
below for precisions.

Proposition 1.5. Let M = R2 be equipped with a smooth metric g bounded above and below by
positive constants and whose derivatives are bounded. Let f be as in (B-1). Suppose that there exists
R > 0 such that R2 \ B(0, R) ⊂ ω. Let u ∈ C0([0, T ], H1(R2)) be a solution with finite Strichartz
norms1 of {

i∂tu+ ∆gu = P ′(|u|2)u (0, T ) × R2,
∂tu = 0 (0, T ) × ω,

(1.3)

If ω satisfies the GCC, then the same conclusions of Theorem 1.2 hold.

1.1.1. Control and stabilization contributions. The control and stabilization of nonlinear Schrödinger
equations has been shown to be a difficult but highly interesting field of research. We mention, for
instance, the works of Rosier and Zhang [RZ09, RZ10] on local control results, and the survey of
Laurent [Lau14] for a thorough summary of results up to 2014. Here, we will focus on global results.

Unique continuation often plays a key role in obtaining (semi)global results of this kind. For
instance, to stabilize and control the wave equation in the subcritical case, Dehman, Lebeau, and
Zuazua [DLZ03] employed a method that combines two main ingredients to obtain the required
observability inequality: the geometric control condition and a unique continuation property. Even

1That is, it belongs to the space that ensures the wellposedness of the equation in the sense of [BGT04, Section 3,
Remark 5].
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though they worked on a specific geometry, their strategy is quite general and it has been suc-
cessfully applied to study the controllability properties of other systems. Notably, for the control
and stabilization of the Schrödinger equation on compact surfaces, Dehman, Gérard, and Lebeau
[DGL06] made crucial use of the Strichartz estimates due to Burq, Gérard, and Tzvetkov [BGT04]
which allowed them to develop microlocal propagation methods adapted to the equation. Their
results hold under the following two assumptions on the pair (M, ω):

• The observation set ω ⊂ M satisfies the GCC.
• For every T > 0, the only solution lying in the space C([0, T ], H1(M)) to the system{

i∂tu+ ∆gu+ b1(t, x)u+ b2(t, x)u = 0 (t, x) ∈ (0, T ) ×M,
u = 0 (t, x) ∈ (0, T ) × ω,

(UCP)

where b1 and b2 belong to L∞([0, T ], Lp(M)) for some p > 0 large enough, is the trivial one
u = 0.

The second assumption is a unique continuation property with potentials, referred to as UCP in
what follows. Under analogous assumptions, Laurent [Lau10a, Lau10b] extended their analysis in
dimension one and in dimension three by adapting their framework to Bourgain spaces, respectively.
It is worth mentioning that whenever d ≥ 2, in these works the unique continuation property UCP
is an assumption, and it is proved to be compatible with the GCC in some specific geometries.
Here, we obtain the unique continuation property for the nonlinear equation as a consequence of
the GCC, thereby allowing us to drop the unique continuation assumption UCP from their works
and to establish that the GCC is a sufficient condition for stabilization and control of these models.
Notably, we answer to the positive to the open question stated in [DGL06, Remark 3] and by
[Lau10b] in the nonlinear case.

Let (M, g) be any of the following manifolds:

• if d = 2 then (M, g) is a compact Riemannian surface,
• T3 or the irrational torus R3/(θ1Z× θ2Z× θ3Z) with θi ∈ R,
• S3 or S2 × S1.

Let Xd denote the right functional space inherited from the wellposedness framework. Namely, for
d = 2, X2 ensures finite Strichartz norm and for d = 3, X3 corresponds to the Bourgain space

X1,b
T with b ∈ (1/2, 1]. This allows us to handle the subcriticality on each situation. To not over

complicate the statements below, we refer to Section 3.1.1 for more precisions.
In what follows, we will relate ω to a cutoff function a ∈ C∞(M,R) such that ω = {x ∈

M | a(x) ̸= 0}.

Theorem 1.6. Let (M, g) be any of the manifolds described above and f be as in (B) according to
the dimension of the manifold. Let ω ⊂ M satisfy the GCC. Then for every R0 > 0, there exist two
constants C > 0 and γ > 0 such that if ∥u0∥H1 ≤ R0 then

∥u(t)∥H1 ≤ Ce−γt∥u0∥H1 , t > 0,

holds for every u ∈ Xd solution of the damped system{
i∂tu+ ∆gu− a(x)(1 − ∆g)−1a(x)∂tu = P ′(|u|2)u (t, x) ∈ [0,∞) ×M,

u(0) = u0.

Theorem 1.6 is a direct combination of [DGL06, Theorem 1] and Theorem 1.2 for d = 2, and
[Lau10b, Theorem 2] and Theorem 1.3 for d = 3. By time reversibility, stabilization and local
control around 0 allows us to obtain the following semiglobal exact controllability result.

Theorem 1.7. Let (M, g) be any of the manifolds described above and f be as in (B) according to
the dimension d of the manifold. Let ω ⊂ M satisfy the GCC. Then for every R0 > 0, there exist
T > 0 and C > 0 such that if for every u0, u1 ∈ H1(M) with ∥u0∥H1 ≤ R0 and ∥u1∥H1(M) ≤ R0,
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then there exists a control g ∈ C0([0, T ], H1(M)) with ∥g∥L∞([0,T ],H1(M)) ≤ C supported in [0, T ]×ω
such that the unique solution u ∈ Xd ⊂ C0([0, T ], H1(M)) of the system{

i∂tu+ ∆gu = P ′(|u|2)u+ g (t, x) ∈ [0, T ] ×M,
u(0) = u0,

satisfies u(T, ·) = u1.

1.1.2. Literature on unique continuation. As previously described, a main motivation coming from
control theory is to prove a statement of the form:

ω satisfies the GCC =⇒ Unique continuation property UCP holds.

This is a key step to establish sufficient geometric conditions on the observation zone for the con-
trollability and stabilization results to hold. A classical strategy to prove a unique continuation
property for (1.1) from the observation ∂tu = 0 in (0, T ) × ω is to take time derivative z = ∂tu,
which leads to establish UCP with low-regularity potentials involving V = f ′(u). Below we re-
view some already known results on unique continuation and explain why this result appears to be
difficult to obtain with the current available techniques.

A first approach to unique continuation might be to employ the general theory of Hörmander
[Hör63, Hör85], where the potential V involving f ′(u) has at most the same regularity as u. The
main feature of Hörmander’s theory is that it gives a geometric condition on the hypersurface
S = {Ψ = 0}, the pseudoconvexity, sufficient for the local unique continuation across S. Regarding
the regularity of the coefficients, as it is based on Carleman estimates, it is well-suited for potentials
with rough regularity. Obtaining a global unique continuation result then requires the propagation
of local unique continuation across a well-chosen family of hypersurfaces S verifying the pseudo-
convexity assumption. However, this leads to a global geometric assumption which is known to be
stronger than the GCC, see Miller [Mil03]. Furthermore, we point out that Hörmander’s theorem is
empty in our situation the pseudoconvexity assumptions are never satisfied for the Schrödinger op-
erator. However, Lascar and Zuily [LZ82] showed that Hörmander’s theorem hold in the anisotropic
case by appropriate modification of the symbol classes and Poisson bracket, by taking into account
the anisotropic (or quasi-homogeneous) nature of the Schrödinger operator. We mention the works
[Deh84, Isa93, Tat97] for further results in this direction. As expected, the pseudoconvexity as-
sumption is a strong local geometric condition and it naturally leads to a strong global geometric
assumption on the observation set ω in its global version. When it comes to global Carleman esti-
mates with applications to control or inverse problems, we mention [BP02, TX07, MOR08, Lau10b].
In particular, a weak pseudoconvexity condition has been proved to be sufficient in [MOR08] for a
flat metric. Notably, Laurent [Lau10b] employed this pseudoconvexity condition to obtain unique
continuation one some compact manifolds of dimension 3 from some particular observation zones
satisfying the GCC. Nevertheless, this approach forces to check the (weak)pseudoconvexity condi-
tion on each situation we consider, which is mostly impossible in general.

If we want to go beyond the pseudoconvexity assumption, another available unique continuation
result in the above is the John-Holmgren theorem. Although it gives better geometric assumptions
than weak pseudoconvexity, there are some strong drawbacks to this result. On the one hand, it
requires analyticity on all the coefficients of the differential operator under consideration. On the
other hand, it is not stable under C∞ lower order perturbations and a counterexample of Métevier
[Mét93] showed that a nonlinear version of this theorem does not hold in general.

Regarding the propagation of analyticity for nonlinear equations, several results date back to the
1980s and 1990s. Alinhac-Métivier proved in [AM84a, AM84b] that if u is a regular enough solution
of a general nonlinear PDE, the analyticity of u propagates along any hypersurface for which the
real characteristics of the linearized operator cross the hypersurface transversally. Subsequently,
there has been an intense activity to understand what kind of singularities propagate for nonlinear
systems, of which waves particular cases. It was found that the situation is quite complicated since
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microlocal analytic singularities do not remain confined to bicharacteristics as in the linear case,
but can give rise to nonlinear interactions. For more details, see Godin [God86] and Gérard [Gér88].

In our geometric context, to obtain a global result from local propagation of singularities, the GCC
would force to propagate from hypersurfaces of the form S = {ψ = 0} with ψ(t, x) = ψ(x), in which
case, the Schödinger operator is never hyperbolic with respect to S. Thus the propagation results
from [AM84a, AM84b] do not seem to apply, despite the existence of bicharacteristics transverse to
S.

The problem is better understood in the C∞ or Hs setting. The first works of propagation of
singularities for Schrödinger equations go back to Lascar [Las77] and Boutet de Monvel [BdM75]
where they introduce parabolic wavefront set which propagates along the geodesics at fixed time. To
study propagation and reflection of singularities on Rd

+, Szeftel [Sze05] develops a paradifferential
calculus well-suited to the nonlinear Schrödinger equation. Global results under the GCC are known
to hold on compact manifolds in the subcritical case via Strichartz estimates and adapted bootstrap
arguments [DGL06]. By contrast, adapting such bootstrap arguments in the analytic category
seems to be way more complicated: even for f = 0, local propagation of the analytic wavefront set
for Schrödinger relies on microlocal methods and exhibits delicate behavior near glancing and in
the presence of a boundary due to infinite speed of propagation, see Robbiano–Zuily [RZ99] and
Martinez–Nakamura–Sordoni [MNS10]. It is uncertain if a global propagation of analytic regularity
on manifolds, especially with boundary, can be obtained under the same assumptions using the
analysis for the linear case.

So far, we have seen that for local unique continuation, there is an interplay in between the geo-
metric restrictions and the regularity of the coefficients of the differential operator. In this direction,
in a series of remarkable works by Robbiano [Rob91], Tataru [Tat95, Tat99], Robbiano and Zuily
[RZ98] and Hörmander [Hör92, Hör97], a general unique continuation result that interpolates in be-
tween Holmgren and Hörmander’s theorem was obtained. In the particular case of the Schrödinger
operator P = i∂t + ∆g + V , it states that local unique continuation holds assuming regular enough
metric g, that the potential depends analytically in the time variable t only and that the hypersur-
face S = {Ψ = 0} is non-characteristic to P . That is, if p2(t, x, ξt, ξx) = −

∑
j,k g

jk(x)ξxjξxk
denotes

the principal symbol of P , where ξt is the dual variable to t and ξxj is the dual variable to xj , the
non-characteristic assumption translates into

p2(t0, x0, dΨ(t0, ξ0)) ̸= 0 ⇐⇒ (∇xΨ)(t0, ξ0) ̸= 0.

This hypothesis is optimal: it only excludes the surfaces that are tangent to {t = t0}, for which
unique continuation is, in general, not verified. We refer to [FLL24, Section 5] for details on the
counterexample. This leads to a global unique continuation result from (0, T ) × ω for any T > 0
and any nonempty open ω ⊂ M, as long as the potential V depends analytically in the time
variable t; see Theorem 3.20 below. Regarding further results in this direction, T’joën [Tjo00] has
proved a quasi-homogeneous variant of the Tataru-Robbiano-Zuily-Hörmander theorem. Recently,
the analyticity assumption was relaxed to the 2-Gevrey class by Filippas, Laurent and Léautaud
[FLL25] by exploiting the anisotropy of the Schrödinger operator.

Thus, going back to our main motivation, to apply this result in our situation we would need
to prove that V = f ′(u) is analytic in time, leading to prove the same for u. From the point of
view of regularity, asking for analyticity is indeed a quite strong hypothesis and a solution u to the
nonlinear Schrödinger equation (1.1), a priori, has no reason to be analytic in time. This observation
underpins the importance of our result Theorem 1.1, which in particular allows us to obtain unique
continuation for analytic nonlinearities and under the sole GCC as geometric condition.
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1.2. Abstract frequency-based reconstruction. Let T > 0. In this section, we consider the
following nonlinear observability system{

∂tu = Au+ f(u+ h1) + h2 in [0, T ],
Cu(t) = 0 t ∈ [0, T ],

(1.4)

on a suitable real Hilbert space X, where A is a skew-adjoint operator on X, f is a mapping from X
into itself, h1 and h2 are some applications from [0, T ] into X, and C is a linear bounded observation
operator in X.

In what follows, we will make several assumptions that will be enforced towards our main result.
The first assumption dictates the class of PDEs we will be working with.

Assumption 1. A is a skew-adjoint operator with domain D(A) on a real separable Hilbert space
X, so that A∗A = −A2 has a compact resolvent.

We will now list some consequences of such an assumption. That A∗A = −A2 is non-negative
self-adjoint, allows us to define the Hilbert space Xσ = D((A∗A)σ/2) ↪→ X for any σ ∈ R.

By the spectral theorem, and since A∗A has a compact resolvent, the spectrum of A∗A is real
and discrete, allowing us to construct an orthonormal basis of eigenvectors of A∗A in X, denoted by
(ej)j∈N and associated to the nonnegative eigenvalues (λj)j∈N (ranged increasingly) with λj −→ +∞
as j → +∞. We introduce the high-frequency projectors Qn on the space span{ej}j≥n and then
we set the low-frequency projection Pn = I − Qn. Note that A commutes with Pn and APn is a
bounded operator of Xσ into itself with norm less than ⟨λn⟩.

The parameter σ will be fixed from now on. We will use the notation PnX
σ or QnX

σ for that
related image of the Hilbert space endowed with the topology of Xσ.

Let us introduce some notation. For a given real Banach space Y , we denote the ball centered
at 0 of radius M by

BM (Y ) := {y ∈ Y | ∥y∥Y ≤M}.

For a given non-empty interval I ⊂ R, we denote the ball of radius R of C0(I, Y ) by

BI
R(Y ) = {y ∈ C0(I, Y ) | ∥y∥C0(I,Y ) ≤ R},

equipped with the L∞([0, T ], Y )-norm. Building upon this notation, given a non-empty set A ⊂ Y
we introduce

BI
R(Y,A) = {y ∈ BI

R(Y ) | y(t) ∈ A for every t ∈ [0, T ]}.
Furthermore, we introduce the canonical complexification YC, defined as the set of elements y1+iy2,
yj ∈ Y , see [BS71b, Section 2]. We then introduce following notation for the cylinder on YC,

BM,δ(Y ) = {y ∈ YC | ∥ℜ(y)∥Y ≤M and ∥ℑ(y)∥Y ≤ δ},

and similarly on C0(I, YC),

BI
R,δ(Y ) := {z ∈ C0(I, YC) | ∀t ∈ I, ∥ℜ(z(t))∥Y ≤ R, ∥ℑ(z(t))∥Y ≤ δ}.

The latter space is equipped with the natural L∞([0, T ], YC)-norm.
We will make the following assumption on the nonlinearity.

Assumption 2. The nonlinear map f : Xσ → Xσ belongs to C2(Xσ) and is bounded on the bounded
sets of Xσ. Moreover, its differential map Df : x ∈ Xσ 7→ Df(x) ∈ L(Xσ) is bounded and Lipschitz-
continuous on the ball B4R0(Xσ), for some R0 > 0.

Furthermore, there exists δ > 0 so that f can be extended holomorphically from B4R0,2δ(X
σ
C) into

Xσ
C. This means that f is holomorphic in the interior of this ball and continuous up to the boundary.

Moreover, for some L > 0, the following inequalities hold for any z, z′ ∈ B4R0,2δ(X
σ):

∥f(z)∥Xσ
C
≤ L, ∥f(z) − f(z′)∥Xσ

C
≤ L∥z − z′∥Xσ

C
and ∥Df(z) −Df(z′)∥L(Xσ

C )
≤ L∥z − z′∥Xσ

C
. (1.5)
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We make an observability assumption for solutions of the linear system{
∂tw = (A+ QnDf(v))w, t ∈ (0, T ],
w(0) = w0 ∈ QnX

σ,
(1.6)

which is uniform with respect to the parameter n and the input v ∈ C0([0, T ], Xσ). Denote by Sn(v)
the evolution operator associated to (1.6) (see Theorem 2.1 below for a more precise definition).

Assumption 3. Let R0 > 0, T > 0 and n0 ∈ N be given and let V be a non-empty subset of

B[0,T ]
3R0

(Xσ). Let C ∈ L(Xσ) be an observation operator. We assume that t 7→ Sn(v)(t, 0) is

observable on [0, T ] for any v ∈ V and n ≥ n0. Moreover, there exists a constant Cobs > 0 such
that, for any n ≥ n0, for all v ∈ V

∥w0∥2Xσ ≤ C2
obs

∫ T

0
∥CSn(v)(t, 0)w0∥2Xσdt, ∀w0 ∈ QnX

σ. (1.7)

The main result is the following.

Theorem 1.8. Let T > 0, R0 > 0, R1 > 0 and n0 ∈ N. Let T ∗ > T . Let A be a compact subset of

Xσ and let K be a compact subset of B[0,T ∗]
R0

(Xσ). Let us further assume that both A and K are stable

under the projector Pn. Let h1 ∈ B[0,T ∗]
R0

(Xσ,A) ∩ K and h2 ∈ B[0,T ∗]
R1

(Xσ,A) be such that they both

admit some extension C0([0, T ∗] + i[−µ, µ], Xσ
C), respectively, with µ > 0, so that the application{

(0, T ∗) + i(−µ, µ) −→ Xσ
C

z 7−→ h1(z)

is holomorphic. We assume the same for h2. We assume moreover that ℜh1(z) ∈ BR0(Xσ) for any
z ∈ [0, T ∗] + i[−µ, µ].

Assume that Assumptions 1, 2 (with R0) and 3 (with R0, T , n0 and V = B[0,T ]
3R0

(Xσ,A+A)) hold.

Then, any solution u ∈ K ⊂ C0([0, T ∗], Xσ) satisfying u(t) ∈ A for t ∈ [0, T ∗] and{
∂tu = Au+ f(u+ h1) + h2 on [0, T ∗],

Cu(t) = 0 for t ∈ [0, T ∗],
(1.8)

is real analytic in t in (0, T ∗) with value in Xσ.

This result is a next natural step of the technique introduced by Laurent and the author in
[LL24], which can be seen as a sort of finite-time adaptation of an abstract result due to Hale and
Raugel [HR03] in the context of dynamical systems. Here, we relax the compactness assumption on
f by introducing the uniform high-frequency observability Assumption 3. This assumption permits
us to face the lack of compactness of the nonlinearity by considering the linearization around
low frequencies and translating a big part of the analysis into this linear problem. In turn, the
compactness hypotheses are now put onto the solution itself.

We thus follow the same strategy of proof as in [LL24], but we perform a finer analysis regarding
the behaviour of the nonlinearity and the linearized systems involved. In practice, this allow us to
consider more general analytic nonlinearities whereas the compactness properties will depend on
the equation under study, mostly obtained through smoothing effects or propagation of regularity.

1.3. Outline of the article. Section 2 is devoted to the proof of the abstract Theorem 1.8. Sec-
tion 3 contains the applications to the nonlinear Schrödinger equation. It contains the verification
that the abstract Theorem 1.8 can be applied in the settings aforementioned for a sufficiently high
regularity index σ. It also contains some propagation of regularity arguments that allow to reach
this regularity σ starting from the energy space. In Section A, we gathered some analysis results,
including complex analysis in Banach spaces. In Section B we recall some basic facts about pseu-
dodifferential operators.
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Notation. Given Banach spaces X and Y , we denote by L(X,Y ) the Banach space of all bounded
linear operators from X to Y . Sometimes to clarify the difference in between real and complex
structures, if X and Y are complex Banach spaces, we will denote by LC(X,Y ) the Banach space
of bounded linear operators which are C-linear with the inherited complex structure. Given two
quantities A and B, we will sometimes write A ≲ B to say that there exists a constant C > 0,
independent of A and B but possibly depending on other parameters, such that A ≤ CB.

1.4. Acknowledgment. I would like to warmly thank Camille Laurent for carefully reading an
earlier version of this article and suggesting countless improvements, as well as for the helpful
discussions, encouragement, and patient guidance.

This project has received funding from the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Sk lodowska-Curie grant agreement No 945332.

2. Abstract analytic reconstruction

2.1. Sketch of the strategy. The aim of this section is to prove Theorem 1.8. For the reader’s con-
venience, we will briefly outline its proof, based on a generalized Galerkin decomposition introduced
in Hale-Raugel [HR03] and Laurent and the author [LL24].

In this section we will employ the notations introduced in Section 1.2. Let T > 0 and σ ≥ 0 be
fixed parameters from now onward, unless specified otherwise. Let u = u(t) be a mild solution of
(1.8) in C0([0, T ], Xσ) and suppose h1 = 0, h2 = 0 for simplicity. Recall that, from Assumption 1,
we have the low and high-frequency projections Pn and Qn = I − Pn, which allows us to consider
the splitting

u(t) = Pnu(t) + Qnu(t) = v(t) + w(t),

where
(
v, w

)
solves the following system ∂tv(t) = Av(t) + Pnf(v + w),

∂tw(t) = Aw(t) + Qnf(v + w),
Cw(t) = −Cv(t).

By Duhamel’s formula, the high-frequency component w can be written as

w(t) = etAw(0) +

∫ t

0
eA(t−s)Qnf

(
v(s) + w(s)

)
ds.

The observation condition Cw = −Cv suggests that given v, we can reconstruct w by solving the
corresponding nonlinear observability system. Since here we aim to relax compactness assumptions
on the nonlinearity f, we cannot directly setup a fixed point argument as in [LL24]. To face this
lack of compactness on f, we will consider a linearization of the component w along the component
v of the solution. Let us introduce H : Xσ ×Xσ → Xσ defined by

H(v, w) :=

∫ 1

0
[Df(v + τw) −Df(v)]wdτ.

Formally, by writing f(v+w) = Df(v)w+ f(v) + H(w, v), we are led to study the nonlinear observ-
ability problem at high-frequency{

∂tw(t) =
(
A+ QnDf(v)

)
w + Qn

(
f(v) + H(v, w)

)
,

Cw(t) = −Cv(t).

Due to the observability condition Cw = −Cv, we can regard the low-frequency part as an input
for the high-frequency system. In order to set up the high-frequency reconstruction, the first part of
Assumption 2 will allow us to justify that Duhamel’s formula holds, including the potential QnDf(v)
in the linear part of the equation. Then, further enforcing the uniform high-frequency observability
Assumption 3, we will argue that a linear reconstruction is possible. If we momentarily forget
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about the source term, this says that we can reconstruct w(0) in terms of the observation of w,
which is Cw = −Cv. This linearization will then allow us to tackle the nonlinear observability
problem by means of an adequate fixed point argument at high-frequency for inputs belonging to
a compact set. By using Duhamel’s formula, this will yield a reconstruction operator R, defined in
some appropriate spaces, such that Qnu = R(Pnu) for a large enough frequency threshold n ∈ N.

Then, the solution u can be represented as u(t) = v(t) + R(v)(t), where v solves

∂tv = Av + Pnf(v + R(v)). (2.1)

To demonstrate that t ∈ (0, T ) 7→ u(t) ∈ Xσ is analytic, the second part of Assumption 2, namely,
that f admits a holomorphic extension, and a compactness assumption on u are essential. This
will be achieved by establishing that t 7→ v(t) and v 7→ R(v) are both analytic maps. If instead,
we consider (2.1) as a differential equation on the space Banach space C0([0, T ],PnX

σ), classical
ODEs theory imply that t 7→ v(t) is as smooth as f, and therefore analytic. The uniform contraction
principle further ensures that R depends analytically on v, from which the result follows.

In what follows, we develop these ideas towards the proof of the main theorem. Although most
intermediate results will treat v as a generic input, in the end we will consider a low-frequency input
plus a parameter which is not necessarily low-frequency. For the sake of convenience, we keep this
notation.

2.2. Preliminaries. Let us make the following intermediary assumption on the nonlinearity.

Assumption 2a. The nonlinear map f : Xσ → Xσ belongs to C2(Xσ) and is bounded on the
bounded sets of Xσ. Moreover, its differential map Df : x ∈ Xσ 7→ Df(x) ∈ L(Xσ) is bounded and
Lipschitz-continuous on the ball B4R0(Xσ), for some R0 > 0.

Let s ∈ [0, T ) and n ∈ N. For v ∈ C0([s, T ], Xσ) given, we consider the linear equation{
∂tw = (A+ QnDf(v))w, t ∈ (s, T ],

w(s) = ws.
(2.2)

Our first task is to justify that, for any w(s) ∈ QnX
σ, (2.2) has a unique mild solution characterized

by Duhamel’s formula

w(t) := e(t−s)Aws +

∫ t

s
e(t−τ)AQnDf(v(τ))w(τ)dτ. (2.3)

This will lead us to introduce a map Sn : v 7→ Sn(v), where Sn(v) is the evolution operator, in the
sense of [Paz83, Chapter 5, Definition 5.3], characterized by formula (2.3) above as the unique mild
solution of (2.2) with Sn(v)(·, s)ws = w(·). We make this precise in the following lemma.

Lemma 2.1. Let R0 > 0 and T > 0. Let n ∈ N. Under Assumptions 1 and 2a (with R0), for each
v ∈ C0([s, T ], Xσ), the map (t, s) 7→ Sn(v)(t, s) is a linear evolution operator for 0 ≤ s ≤ t ≤ T and
Duhamel’s formula (2.3) holds. Moreover, for s ∈ [0, T ), the map

Sn : v ∈ B[s,T ]
3R0

(Xσ) 7−→ Sn(v)(·, s) ∈ L(QnX
σ, C0([s, T ],QnX

σ)), (2.4)

is uniformly bounded and Lipschitz-continuous of constant C > 0 (independent of n ∈ N): for any

v1, v2 ∈ B[s,T ]
3R0

(Xσ) it holds

∥S(v1)(·, s) − S(v2)(·, s)∥L(QnXσ ,C0([s,T ],QnXσ)) ≤ C∥v1 − v2∥C0([s,T ],Xσ). (2.5)

Proof. Let F be the map given by

(Fw)(t) = e(t−s)Aws +

∫ t

s
e(t−τ)AQnDf(v(τ))w(τ)dτ, t ∈ [s, T ]. (2.6)



UNIQUE CONTINUATION AND STABILIZATION FOR NLS UNDER THE GCC 11

From Assumption 2a and v ∈ C0([s, T ], Xσ), the map F is well defined from C0([s, T ],QnX
σ) into

itself. Let M be the uniform bound of the map v 7→ Df(v) on B4R0(Xσ). We now claim that for
every t ∈ [s, T ] it holds

∥Fkw −Fkw̃∥C0([s,t],QnXσ) ≤
(CM(t− s))k

k!
∥w − w̃∥C0([s,t],QnXσ), (2.7)

for each k ∈ N. From the Duhamel formula, we get that

∥Fw −Fw̃∥C0([s,t],QnXσ) ≤ CM(t− s)∥w − w̃∥C0([s,t],QnXσ).

Assume that (2.7) is true for some k ∈ N. Then, by writing Fk+1w−Fk+1w̃ = F(Fkw)−F(Fkw̃),
using Duhamel’s formula (2.6) again

∥Fk+1w −Fk+1w̃∥C0([s,t],QnXσ) ≤ CM

∫ t

s
∥Fkw −Fkw̃∥C([s,τ ],QnXσ)dτ

≤ (CM)k+1

k!

∫ t

s
(τ − s)k∥w − w̃∥C0([s,t],QnXσ)dτ

≤ (CM(t− s))k+1

(k + 1)!
∥w − w̃∥C0([s,t],QnXσ).

The claim follows by induction.

Choosing k ∈ N such that (CM(T−s))k

k! < 1, by a generalization of the contraction principle, F
admits a unique fixed point w ∈ C0([s, T ],QnX

σ) which satisfies (2.3). A classical Gronwall’s lemma
argument (used below) shows uniqueness of the solutions. This way, we introduce the map Sn as
precised in (2.4) which maps each v ∈ C0([s, T ], Xσ) into the evolution operator Sn(v) characterized
by (2.3).

Let ws ∈ QnX
σ. By Duhamel’s formula (2.3), for s ≤ t ≤ T we have the estimate

∥w(t)∥Xσ ≤ ∥e(t−s)A∥L(Xσ)∥ws∥Xσ +

∫ t

s
∥e(t−τ)A∥L(Xσ)∥QnDf(v(τ))∥L(Xσ)∥w(τ)∥Xσdτ

and so Gronwall’s lemma implies

∥Sn(v)(t, s)ws∥Xσ ≤ C∥ws∥Xσ exp

(
C

∫ t

s
∥Df(v(τ))∥L(Xσ)dτ

)
.

By Assumption 2a, there exists M = M(R0) > 0 so that sups∈[0,T ]∥Df(v(s))∥L(Xσ) ≤M , uniformly

in v ∈ B[0,T ]
3R0

(Xσ). We then obtain

∥Sn(v)(·, s)ws∥C0([s,T ],QnXσ) ≤ C exp(CTM)∥ws∥Xσ ,

uniformly for v ∈ B[s,T ]
3R0

(Xσ). The linearity of the map ws 7→ Sn(v)(·, s)ws implies that (2.4) is
bounded.

Let v1, v2 ∈ B[s,T ]
3R0

(Xσ) and set wi(t) = S(vi, t, s)ws for ws ∈ QnX
σ for i = 1, 2. In the same

fashion as before, we employ Duhamel’s formula to write

w1(t) − w2(t) = (S(v1)(t, s) − S(v2)(t, s))ws

=

∫ t

s
e(t−τ)AQn[Df(v1(τ)) −Df(v2(τ))]w2(τ)dτ

+

∫ t

s
e(t−τ)AQnDf(v1(τ))(w1(τ) − w2(τ))dτ.
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Thus, by taking Xσ-norm and using the Lipschitz continuity of Df given by Assumption 2a, we get

∥w1(t) − w2(t)∥Xσ ≤ C

∫ t

s

(
∥Df(v1(τ)) −Df(v2(τ))∥L(Xσ)∥w2(τ)∥Xσdt

+ ∥Df(v1(τ))∥L(Xσ)∥w1(τ) − w2(τ)∥Xσ

)
dτ

≤ C(T − s)M∥ws∥Xσ∥v1 − v2∥C0([s,T ],Xσ)

+ C

∫ t

s
∥Df(v1(τ))∥L(Xσ)∥w1(τ) − w2(τ)∥Xσdτ.

Gronwall’s inequality implies that for any ws ∈ QnX
σ

∥(S(v1)(t, s) − S(v2)(t, s))ws∥Xσ ≤ C(T − s)MeC(T−s)M∥ws∥Xσ∥v1 − v2∥C0([s,T ],Xσ).

Using that the previous bound is independent of t ∈ [s, T ], we deduce estimate (2.5) with C
depending on M , R0 and T − s. □

Remark 2.2. The previous lemma shows that for any T > s ≥ 0 and v ∈ B[s,T ]
3R0

(Xσ), (2.2) admits a

unique mild solution w := Sn(v)(·, s)ws ∈ C0([s, T ],QnX
σ).

Our task now is to justify that Duhamel’s formula holds for the equation{
∂tw(t) = (A+ QnDf(v(t)))w(t) + Qnh(t), t ∈ (s, T ],

w(s) = ws,
(2.8)

when h ∈ L1([s, T ], Xσ) is an appropriate source term and ws ∈ QnX
σ.

Remark 2.3. From now on, every time we refer to equations of the form (2.8), we will understand
them in the sense of mild solutions (i.e. whose solutions are defined through Duhamel’s formula).
Indeed, since v ∈ C0([s, T ], Xσ), even for regular data ws ∈ D(A) ∩ QnX

σ and right-hand side
h ∈ C0([s, T ], Xσ), we cannot ensure that (2.8) admits a classical solution.

Lemma 2.4. Let n ∈ N. Let v ∈ C0([s, T ], Xσ). If ws ∈ QnX
σ and h ∈ L1([s, T ], Xσ), then

w ∈ C0([s, T ],QnX
σ) is a mild solution of (2.8) if and only if

w(t) = Sn(v)(t, s)ws +

∫ t

s
Sn(v)(t, τ)Qnh(τ)dτ, t ∈ [s, T ]. (2.9)

Moreover, if v ∈ B[0,T ]
3R0

(Xσ), there exists C > 0 (independent of n) such that

∥w(t)∥C0([s,T ],Xσ) ≤ C
(
∥ws∥Xσ + ∥Qnh∥L1([s,T ],Xσ)

)
. (2.10)

Proof. Let w be given by (2.9). We will develop the right-hand side of evolutionary formula (2.9)
to arrive to the classical Duhamel formulation of (2.8), proving that it is indeed the mild solution
we are looking for.

By definition, the evolution operator S(v)(t, s) is a mild solution of the the homogeneous problem{
d

dt
Ψ(t) =

(
A+ QnDf(v(t))

)
Ψ(t),

Ψ(s) = I,

that is, it is characterized by

Sn(v)(t, s) = e(t−s)A +

∫ t

s
e(t−τ)AQnDf(v(τ))Sn(v)(τ, s)dτ (2.11)

as a linear operator in L(Xσ). We can thus write

w(t) = e(t−s)Aws +

∫ t

s
e(t−τ)AQnDf(v(τ))Sn(v)(τ, s)wsdτ +

∫ t

s
Sn(v)(t, τ)Qnh(τ)dτ. (2.12)
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On the one hand, focusing on the forcing term above, by using formula (2.11) we get∫ t

s
Sn(v)(t, τ)Qnh(τ)dτ =

∫ t

s
e(t−τ)AQnh(τ)dτ

+

∫ t

s

∫ t

τ
e(t−η)AQnDf(v(η))Sn(v)(η, τ)Qnh(τ)dηdτ.

On the other hand, by using once again that w is of the form (2.9), we see that∫ t

s
e(t−τ)AQnDf(v(τ))w(τ)dτ =

∫ t

s
e(t−τ)AQnDf(v(τ))Sn(v)(τ, s)wsdτ

+

∫ t

s
e(t−τ)AQnDf(v(τ))

(∫ τ

s
Sn(v)(τ, ξ)Qnh(ξ)dξ

)
dτ.

Up to relabeling variables, by Fubini’s theorem we see that the double integrals in the two last
identities are equal. By putting them together we obtain∫ t

s
e(t−τ)AQnDf(v(τ))Sn(v)(τ, s)wsds+

∫ t

s
Sn(v)(t, τ)Qnh(τ)dτ

=

∫ t

s
e(t−τ)AQnDf(v(τ))w(τ)dτ +

∫ t

s
e(t−τ)AQnh(τ)dτ.

Plugging the above identity into (2.12), we obtain that

w(t) = e(t−s)Aws +

∫ t

s
e(t−τ)A

(
QnDf(v(τ))w(τ) + Qnh(τ)

)
dτ,

proving that w is a mild solution of (2.8).
Conversely, let w be a mild solution of (2.8) and let w̃ be given by

w̃(t) := Sn(v)(t, s)ws +

∫ t

s
Sn(v)(t, τ)Qnh(τ)dτ, t ∈ [s, T ].

By the above argument, we see that w̃ is a mild solution of (2.8) with initial data ws and source
term h. Thus w̃ = w by uniqueness of mild solutions, proving that both formulations are equivalent.

Classically, estimate (2.10) follows from Duhamel’s formula (2.9) and the uniform bound of Sn
given by Theorem 2.1. □

Remark 2.5. After Theorem 2.1, observe that the constant C in (2.10) does not depend on n ∈ N.

Building up on Assumption 2a, we will further assume that there exists δ > 0 so that f can be
extended holomorphically to B4R0,2δ(X

σ
C) into Xσ

C. This means that f is holomorphic in the interior
of this ball and continuous up to the boundary. Moreover, for some L > 0, the following inequalities
hold for any z, z′ ∈ B4R0,2δ(X

σ):

∥f(z)∥Xσ
C
≤ L, ∥f(z) − f(z′)∥Xσ

C
≤ L∥z − z′∥Xσ

C
and ∥Df(z) −Df(z′)∥L(Xσ

C )
≤ L∥z − z′∥Xσ

C
.

This is precisely Assumption 2.
We have the following lemma for the validity of a holomorphic extension of the map v 7→ Sn(v).

Lemma 2.6. Let T > 0 and R0 > 0. Under Assumptions 1 and 2 (with R0), there exists δ0 > 0
such that for every n ∈ N the map Sn defined by (2.4) can be holomorphically extended as

SC
n : v ∈ B[s,T ]

3R0,δ0
(Xσ) 7−→ Sn(v) ∈ LC(QnX

σ
C, C

0([s, T ],QnX
σ
C)). (2.13)
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Furthermore, such extension is bounded and Lipschitz-continuous of constant C > 0 (independent

of n ∈ N): for any v1, v2 ∈ B[s,T ]
3R0,δ0

(Xσ)

∥SC
n (v1)(·, s) − SC

n (v2)(·, s)∥L(QnXσ
C ,C

0([s,T ],QnXσ
C ))

≤ C∥v1 − v2∥C0([s,T ],Xσ
C )
. (2.14)

Proof. First, we show the existence of the complex extension as specified in (2.13) and then we will
prove that this map is indeed holomorphic.

Step 1. Complex extension. The first step is to prove that Duhamel’s formula still makes sense in
the complex setting, which will give us the desired complex extension.

First of all, for each t ∈ [s, T ] the semigroup map etA, as well as the projector Qn, are linear
maps in L(Xσ), so they admit holomorphic extensions as linear maps in the complexification Xσ

C,
namely, these extensions belong to LC(Xσ

C); see [BS71b, Theorem 3]. Secondly, from Assumption
2, f admits a holomorphic extension from B4R0,2δ(X

σ
C) into Xσ

C and thus its complex differential Df,
defined as

Df(x)k := δf(x; k) = lim
C∋s→0

1

s

(
f(x+ sk) − f(x)

)
.

maps B4R0,2δ(X
σ
C) into LC(Xσ

C). We denote all of these extensions by the same letter as its non-
complexified versions.

Observe that whenever δ0 ≤ δ, for any v ∈ B[s,T ]
3R0,δ0

(Xσ), the linear map QnDf(v) is well-defined

and belongs to LC(QnX
σ
C, C

0([s, T ], Xσ
C)). We thus have a well-defined map

SC
n : v ∈ B[s,T ]

3R0,δ0
(Xσ) 7→ SC

n (v)(·, s) ∈ LC(QnX
σ
C, C

0([s, T ],QnX
σ
C)) (2.15)

characterized by

SC
n (v)(t, s)ws := e(t−s)Aws +

∫ t

s
e(t−τ)AQnDf(v(τ))SC

n (v)(τ, s)wsdτ. (2.16)

Indeed, by the discussion at the beginning, the right-hand side above makes sense and moreover,
Assumption 2 allows us to perform a similar fixed-point argument as in Theorem 2.1, from which
we get the Duhamel’s formula characterization and the regularity claim. Furthermore, the same
Gronwall-type argument allows us to establish the Lipschitz-continuity (2.14) and boundedness of
SC
n , uniform in n ∈ N. This map is characterized by the corresponding Duhamel’s formula (2.16)

and it give us the mapping properties as stated in (2.15), that is, SC
n (v) is C-linear for each fixed v.

Therefore it provides us with the desired complex extension, which we will denote by just Sn from
now on.

Step 2. Holomorphicity of the extension. We now prove that the complex extension Sn defined
above is holomorphic by showing that it is complex differentiable; see Theorem A8. Let us consider
t ∈ [s, T ] 7→ ξq(t) := ξ(t; q) ∈ QnX

σ
C, mild solution of{

dξq(t)

dt
= (A+ QnDf(q(t)))ξq(t), t ∈ (s, T ],

ξq(s) = ξs,

with ξs ∈ QnX
σ
C and q ∈ C0([s, T ], Xσ

C). By the previous discussion, we have ξq ∈ C0([s, T ],QnX
σ
C)

and it is characterized by

ξq(t) = S(q)(t, s)ξs = etAξs +

∫ t

s
e(t−τ)AQnDf(q(τ))ξq(τ)dτ.

We claim that the differential of S at v ∈ IntB[s,T ]
3R0,δ0

(Xσ) is

dSn(v) : h ∈ C0([s, T ], Xσ
C) 7−→ dSn(v)h ∈ L(QnX

σ
C, C

0([s, T ],QnX
σ
C)),
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where (dSn(v)h)(·)ξs := z(·;h) ∈ C0([0, T ],QnX
σ
C) is characterized by

z(t;h) =

∫ t

s
Sn(v)(t, τ)QnD

2f(v(τ))[h(τ), ξv(τ)]dτ,

with ξv ∈ C0([s, T ],QnX
σ
C) as above with ξs fixed and D2f(x) : Xσ

C ×Xσ
C → Xσ

C being the bilinear
map defined as

D2f(x)[h, k] := lim
C∋s→0

1

s

(
Df(x+ sh)k −Df(x)k

)
.

To this end, let us consider the map

t ∈ [s, T ] 7→ D(t) = ξ(t; v + h) − ξ(t; v) − z(t;h) ∈ QnX
σ
C.

Using Duhamel’s formula and some algebraic manipulation, we see that D is a mild solution of{
dD(t)

dt
=

(
A+ QnDf(v)

)
D(t) + Qn

(
Df(v + h) −Df(v)

)
ξv+h −QnD

2f(v)[h, ξv],

D(s) = 0

that is, D is characterized by

D(t) =

∫ t

s
Sn(v)(t, τ)Qn[(Df(v + h) −Df(v) −D2f(v))[h, ξv+h] +D2f(v)[h, ξv+h − ξv]dτ,

for t ∈ [s, T ] and ξs ∈ QnX
σ
C. Thus, we have the bound

∥D∥C0([s,T ],Xσ
C )

≤ C
(
∥(Df(v + h) −Df(v) −D2f(v))[h, ξv+h]∥C0([s,T ],Xσ

C )

+ ∥D2f(v)[h, ξv+h − ξv]∥C0([s,T ],Xσ
C )

)
with C = C(R0, T − s, δ) > 0. Fix v ∈ Int(B[s,T ]

3R0,δ0
(Xσ)) and ℓ > 0 so that BC0([s,T ],Xσ

C ))
(v, ℓ) ⊂

B[s,T ]
3R0,δ0

(Xσ)). For all h ∈ C0([s, T ], Xσ
C) with ∥h∥C0([s,T ],Xσ

C )
≤ ℓ/4 and t ∈ [s, T ], we have v(t) +

h(t) ∈ BR0,δ0(Xσ) (recall δ0 ≤ δ). Being f holomorphic, using a Taylor expansion (see Theorem A9)
along with Cauchy estimates (see Theorem A11), we get the following bound, uniform in t ∈ [s, T ],

∥f(v(t) + h(t)) − f(v(t)) −Df(v(t))h(t)∥Xσ
C

≤
4L∥h(t)∥2Xσ

C

ℓ(ℓ− 2∥h(t)∥Xσ
C

)
≤

4L∥h∥2C0([s,T ],Xσ
C )

ℓ(ℓ− 2∥h∥C0([s,T ],Xσ
C )

)
≤

8L∥h∥2C0([s,T ],Xσ
C )

ℓ2
. (2.17)

The differential of f can be easily extended from C0([s, T ], Xσ
C) into C0([s, T ], Xσ

C) and remains
C-linear. Since, the previous estimate is uniform in t ∈ [s, T ], we can write

∥f(v + h) − f(v) −Df(v)h∥C0([s,T ],Xσ
C )

≤
8L∥h∥2C0([s,T ],Xσ

C )

ℓ2
. (2.18)

This shows that f is a holomorphic map from C0([s, T ], Xσ
C) into itself. In particular, Df : C0([s, T ], Xσ

C) →
LC(C0([s, T ], Xσ

C)) is holomorphic as well and therefore, with a similar reasoning as above, we arrive
to

∥Df(v + h) −Df(v) −D2f(v)h∥L(C0([s,T ],Xσ
C ))

≤ 8L

ℓ2
∥h∥2C0([s,T ],Xσ

C )
.

On the other hand, note that D2f is well-defined and continuous as a map from C0([s, T ], Xσ
C) into2

L2
C(C0([s, T ], Xσ

C), C0([s, T ], Xσ
C)). Therefore, by the Lispchitz-continuity of v 7→ Sn(v), we get

∥D2f(v)[h, ξv+h − ξv]∥C0([s,T ],Xσ
C )

≤ ∥D2f(v)∥L2(C0([s,T ],Xσ
C ))

∥h∥C0([s,T ],Xσ
C )
∥ξv+h − ξv∥C0([s,T ],Xσ

C )

2Lk(E,F ) is defined as the space of k-linear forms from E × . . .× E into F .
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≤ C∥h∥C0([s,T ],Xσ
C )
∥ξv+h − ξv∥L(QnXσ

C ,C
0([s,T ],Xσ

C ))
∥ξs∥Xσ

C

≤ C∥h∥2C0([s,T ],Xσ
C )
∥ξs∥Xσ

C
.

Here, C > 0 is a constant given by the local boundedness of D2f around v (see [Muj86, Proposition
8.6]). Gathering the above inequalities, we obtain, uniformly in a ball centered at v of radius ℓ/4,

∥D∥C0([s,T ],Xσ
C )

≤ C∥h∥2C0([s,T ],Xσ
C )
∥ξs∥Xσ

C
.

In terms of the operator Sn, the previous inequality reads as

∥Sn(v + h)(·, 0)ξs − Sn(v)(·, 0)ξs − (dSn(v)h)ξs∥C0([s,T ],QnXσ
C )

≤ C∥h∥2C0([s,T ],Xσ
C )
∥ξs∥Xσ

C
.

By linearity of Sn(v) and dSn(v)h, we finally get

∥Sn(v + h)(·, 0) − Sn(v)(·, 0) − dSn(v)h∥LC(QnXσ
C ,C

0([s,T ],QnXσ
C ))

≤ C∥h∥2C0([s,T ],Xσ
C )
.

The latter inequality shows that S is complex differentiable, hence holomorphic. □

2.3. High-frequency linear observability problem. From now on, we assume Assumption 3
holds: for R0 > 0 and n0 ∈ N given, for an observation operator C ∈ L(Xσ) and for some non-

empty set V ⊆ B[0,T ]
3R0

(Xσ), there exists a constant Cobs > 0 such that for any n ≥ n0 and all v ∈ V,
it holds

∥w0∥2Xσ ≤ C2
obs

∫ T

0
∥CSn(v)(t, 0)w0∥2Xσdt, ∀w0 ∈ QnX

σ. (2.19)

For all n ≥ n0 and for any v ∈ B[0,T ]
3R0

(Xσ), let On,v ∈ L(QnX
σ, L2([0, T ], Xσ)), defined by On,v :=

CSn(v)(·, 0), be the observation operator of linear solutions at high-frequency with potential. In-
deed, from Theorem 2.1, we know that for w0 ∈ QnX

σ, the map t ∈ [0, T ] 7→ Sn(v)(t, 0)w0 ∈ QnX
σ

is continuous and in particular CSn(v)(·, 0)w0 belongs to L2([0, T ], Xσ).
From Assumption 3, observability inequality (2.19) implies that for any v ∈ V, the operator On,v

is injective and it has closed range. This allows us to define Πn,v as the orthogonal projection3 onto
its image Im(On,v) ⊂ L2([0, T ], Xσ). From now on, we equip Yn,v := Im(On,v) with the induced
topology from L2([0, T ], Xσ) which makes it a Banach space. By the observability inequality (2.19),
we know that On,v : QnX

σ → Yn,v is a bijection, ensuring that Yn,v is closed and that a bounded
reconstruction operator O−1

n,v : Yn,v → QnX
σ exists.

By applying the observability inequality (2.19), we get for any y ∈ Yn,v ⊂ L2([0, T ], Xσ),

∥O−1
n,vy∥Xσ ≤ Cobs∥On,vO−1

n,vy∥L2([0,T ],Xσ) = Cobs∥y∥L2([0,T ],Xσ), (2.20)

and this estimate is uniform in v ∈ V and n ≥ n0. In what follows, we give two main consequences
of Assumption 3, which will be key to set up the reconstruction formula and study its regularity
with respect to the parameter v. First, we introduce the Gramian-dependent operator{

Gn : B[0,T ]
3R0

(Xσ) −→ L(QnX
σ)

v 7−→ O∗
n,vOn,v.

Note that such operator is intrinsically related to the uniform observability Assumption 3, since∫ T

0
∥CSn(v)w0∥2Xσdt = ⟨O∗

n,vOn,vw0, w0⟩Xσ , ∀w0 ∈ QnX
σ,

3According to the natural scalar product in L2([0, T ], Xσ).
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where the adjoint is taken with respect to the real structure of Xσ. Hence, under Assumption 3,
we can introduce the operator{

G†
n : V ⊆ B[0,T ]

3R0
(Xσ) −→ L(QnX

σ)
v 7−→ (O∗

n,vOn,v)−1.

The next lemma establishes some regularity properties of this map.

Lemma 2.7. Let T > 0, R0 > 0, n0 ∈ N and V ⊆ B[0,T ]
3R0

(Xσ). Under Assumptions 1, 2a (with

R0) and 3 (with T , R0, n0 and V), for any n ≥ n0, the map G†
n : V ⊆ B[0,T ]

3R0
(Xσ) → L(QnX

σ) is

well-defined, bounded uniformly by C2
obs and Lipschitz-continuous with

∥G†
n(v1) − G†

n(v2)∥L(QnXσ) ≤ L∥v1 − v2∥C0([0,T ],Xσ)

where the Lipschitz constant L is independent of n ≥ n0. Moreover, if Assumption 2 is enforced
and VK ⊂ V is a compact set in C0([0, T ], Xσ), there exists η > 0 such that for any n ≥ n0, the

map G†
n restricted to VK admits a holomorphic extension as

G†
n : VK + B[0,T ]

η,η (Xσ) → LC(QnX
σ
C)

which is Lipschitz-continuous and uniformly bounded with respect to n ≥ n0.

Proof. To slightly simplify notation, let us introduce

Y = L(QnX
σ, L2([0, T ], Xσ)) and Ỹ = L(L2([0, T ], Xσ),QnX

σ),

where both of them are endowed with the natural operator norm. We also introduce the complexified

versions YC and ỸC, obtained by replacing Xσ by Xσ
C into the above spaces, respectively, and

considering the corresponding space of C-linear bounded operators.

Step 1. Boundedness. Let v ∈ V. Since On,v is a bounded linear operator from QnX
σ into

L2([0, T ], Xσ), so is O∗
n,v from L2([0, T ], Xσ) into QnX

σ; see [Bre11, Remark 16]. Under Assumption
3, observability inequality (2.19) implies that O∗

n,vOn,v ∈ L(QnX
σ) is a bijection with bounded

inverse, that is, (O∗
n,vOn,v)−1 ∈ L(QnX

σ). We then have a well-defined map

G†
n : v ∈ V ⊆ B[0,T ]

3R0
(Xσ) 7→ IGn(v) = (O∗

n,vOn,v)−1 ∈ L(QnX
σ),

where I : Isom(QnX
σ) → Isom(QnX

σ) is the map I(L) = L−1 ∈ Isom(QnX
σ), with Isom(QnX

σ)
being the (open) subset of invertible operators in L(QnX

σ).

The boundedness of G†
n follows directly from Assumption 3. Indeed, as a consequence of the

observability inequality (2.19) we can write

1

C2
obs

∥w0∥2Xσ ≤
∫ T

0
∥On,vw0∥2Xσdt = ⟨O∗

n,vOn,vw0, w0⟩Xσ ≤ ∥O∗
n,vOn,vw0∥Xσ∥w0∥Xσ ,

from which we obtain

∥(O∗
n,vOn,v)−1∥L(QnXσ) = sup{∥O∗

n,vOn,vw0∥−1
QnXσ | w0 ∈ QnX

σ, ∥w0∥ = 1} ≤ C2
obs, (2.21)

and the latter constant is uniform on v ∈ V and n ≥ n0.
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Step 2. Lipschitz-continuity. To verify the Lipschitz continuity of G†
n, we will show that it can be

expressed as the composition of several Lipschitz-continuous maps.
In view of Theorem 2.1, by composition with linear maps, we have that both maps

v ∈ B[0,T ]
3R0

(Xσ) 7−→ On,v = CSn(v) ∈ Y,

v ∈ B[0,T ]
3R0

(Xσ) 7−→ O∗
n,v = (CSn(v))∗ ∈ Ỹ

are Lipschitz-continuous. Let us consider the following (nonlinear) operators:

• Let Nn : v 7→ (O∗
n,v,On,v) be defined from B[0,T ]

3R0
(Xσ) into Ỹ × Y . By Theorem 2.1 and

composition of linear operators, we see that N is bounded and Lipschitz-continuous map in
the C0([0, T ], Xσ)-norm, uniformly in n ∈ N.

• The bilinear continuous form B : (S, T ) 7→ ST , as a map from Ỹ × Y into L(QnX
σ). By

direct computation, it is Lipschitz-continuous on bounded sets of Ỹ × Y , with constant
depending on the size of the set.

• Let I be the map I(L) = L−1 introduced above. Note that for any L1, L2 ∈ Isom(QnX
σ)

we can write L−1
2 −L−1

1 = L−1
1 (L1 −L2)L

−1
2 . This means that I is Lipschitz-continuous on

subsets of Isom(QnX
σ) on which linear maps have bounded inverse.

Let Vn = BNn(V), which is a non-empty subset of Isom(QnX
σ). Note that any operator

in Vn is of the form O∗
n,vOn,v with v ∈ V and whose inverse is uniformly bounded with

respect to v and n ≥ n0 by C2
obs, see (2.21). Therefore, I is Lipschitz-continuous in Vn with

the L(QnX
σ)-topology with constant independent of v ∈ V and n ≥ n0.

Hence, we can write G†
n = IBNn and it is well-defined from V ⊂ B[0,T ]

3R0
(Xσ) into Isom(QnX

σ) ⊂
L(QnX

σ) for n ≥ n0. Moreover, by composition, it is Lipschitz-continuous in the C0([0, T ], Xσ)
topology, uniformly in n ≥ n0.

Step 3. Holomorphic extension. From Theorem 2.6, we have a well-defined holomorphic extension

v ∈ B[0,T ]
3R0,δ0

(Xσ) 7−→ On,v = CSn(v) ∈ YC,

where we dropped the upper script of SC
n for simplicity and we keep denoting by C the complexifi-

cation of the linear observability map on LC(QnX
σ
C). Also, by Theorem A18 we have a well-defined

holomorphic extension of the adjoint map

v ∈ B[0,T ]
3R0,δ0

(Xσ) 7−→ Ãdj(On,v) ∈ ỸC,

where Ãdj denotes the C-linear holomorphic extension of the map Adj which sends a linear bounded
operator into its adjoint. Let us then consider the following maps:

• Let Nn : v 7→
(
Ãdj(On,v),On,v

)
be defined from B[0,T ]

3R0,δ0
(Xσ) into ỸC × YC. By the previous

arguments, we see that N is bounded and holomorphic.

• The bilinear continuous form B : (S, T ) 7→ ST , as a map from ỸC × YC into LC(QnX
σ
C). In

particular, it is holomorphic, given that it is linear on each component Theorem A13.
• Let I : Isom(QnX

σ
C) → Isom(QnX

σ
C) be the map I(L) = L−1 ∈ Isom(QnX

σ
C).

Since Gn := BNn, by composition of holomorphic maps, we can consider the its holomorphic
extension, which we keep denoting by the same letter,

Gn : v ∈ B[0,T ]
3R0,δ0

(Xσ) 7→ Ãdj(On,v)On,v ∈ LC(QnX
σ
C).

Let us fix ε > 0 such that εC2
obs ≤

1
2 . By continuity of the extension, for each v0 ∈ VK , there exists

δ > 0 such that for v ∈ v0 + B[0,T ]
δ,δ (Xσ) we have ∥Gn(v) − Gn(v0)∥L(Xσ

C )
< ε and, by a Neumann

series argument, Gn(v)−1 is well-defined and belongs to LC(QnX
σ
C). Moreover, by Theorem A16

the extended map I : Isom(Xσ
C) → Isom(Xσ

C) is holomorphic on any of these ε-neighborhoods
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around G(v0) with v0 ∈ VK . Since these neighborhoods form an open cover of the compact set

VK + i0 ⊂ B[0,T ]
3R0,δ0

(Xσ), there exists η > 0 such that G† admits a holomorphic extension as

G†
n : v ∈ VK + B[0,T ]

η,η (Xσ) 7→ IGn(v) ∈ LC(QnX
σ
C).

Indeed, at each v ∈ VK + B[0,T ]
η,η (Xσ) we can find a suitable neighborhood on which the Neumann

series expansion for G†
n is valid and thus the conclusion follows by composition of the holomorphic

maps I and Gn. Moreover, by a Neumann series argument, for each v ∈ VK + B[0,T ]
η,η (Xσ),

∥G†
n(v)∥LC(Xσ

C )
≤ 1

1 − ∥G†
n(v0)∥L(Xσ)∥Gn(v) − Gn(v0)∥LC(Xσ

C )

∥G†
n(v0)∥L(Xσ)

≤ 2C2
obs,

where we used that ∥G†
n(v0)∥L(Xσ) ≤ C2

obs. This allows us to prove that G†
n is Lipschitz-continuous

by following the same reasoning as in the real case. □

As a second consequence, we establish an explicit formula for the orthogonal projector Πn,v.

Lemma 2.8. Let T > 0, R0 > 0, n0 ∈ N and V ⊆ B[0,T ]
3R0

(Xσ). Under Assumptions 1, 2a

(with R0) and 3 (with T , R0, n0 and V), for all n ≥ n0 and for any v ∈ V, the orthogonal
projector Πn,v : L2([0, T ], Xσ) → L2([0, T ], Xσ) on Yn,v = Im(On,v) is well-defined and Πn,v =
On,v(O∗

n,vOn,v)−1O∗
n,v.

Proof. Let us consider Π̃n,v = On,v(O∗
n,vOn,v)−1O∗

n,v. From Theorem 2.7 this operator is well-

defined as a map from L2([0, T ], Xσ) into itself. We first note that it is the identity on Yn,v: if
y ∈ Yn,v then it can be written as y = On,vζ for some ζ ∈ L2([0, T ], Xσ) and therefore

Π̃n,vy = Πn,vOn,vζ = On,v(O∗
n,vOn,v)−1(O∗

n,vOn,v)ζ = On,vζ = y.

Additionally, by definition we note that Im(Π̃n,v) ⊂ Yn,v. Now, observe that Π̃n,v is an orthogonal
projection in L2([0, T ], Xσ). Indeed, observe that

Π̃2
n,v = On,v(O∗

n,vOn,v)−1O∗
n,v ◦ On,v(O∗

n,vOn,v)−1O∗
n,v = On,v(O∗

n,vOn,v)−1O∗
n,v = Π̃n,v.

By recalling that the operations taking adjoint and inverse commute, we arrive to

⟨Π̃n,vξ, ζ⟩L2([0,T ],Xσ) = ⟨On,v(O∗
n,vOn,v)−1O∗

n,vξ, ζ⟩L2([0,T ],Xσ)

= ⟨ξ,On,v(O∗
n,vOn,v)−1O∗

n,vζ⟩L2([0,T ],Xσ)

= ⟨ξ, Π̃n,vζ⟩L2([0,T ],Xσ).

By construction, Π̃n,v is a map from L2([0, T ], Xσ) into itself whose image is Im(On,v) = Yn,v. Since
Yn,v is a linear subspace of L2([0, T ], Xσ), by uniqueness of the orthogonal projection we conclude

that Πn,v = Π̃n,v. □

Remark 2.9. For notational purposes, when needed we will also write Πn,v as the operator with
value on Yn,v. That way, for instance, the operator O−1

n,vΠn,v is well-defined for any v ∈ V.

2.3.1. Linear reconstruction. To ease notation, we consider the operator Iv(t) : ξ 7→
∫ t
0 Sn(v)(t, s)ξ(s)ds

and denote Iv(·) when the operator is seen with value in C0([0, T ], Y ) for a suitable Banach space.
The above discussion will enable us to solve an observability Cauchy problem, which is the content

of the following Lemma.
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Lemma 2.10. Let R0 > 0, T > 0, n0 ∈ N and V ⊆ B[0,T ]
3R0

(Xσ). Under Assumptions 1, 2a (with

R0 > 0) and 3 (with T , R0, n0 and V), there exists C > 0 so that for any n ≥ n0, v ∈ V,
g ∈ L2([0, T ], Xσ) and h ∈ L1([0, T ], Xσ), there exists a unique w ∈ C0([0, T ],QnX

σ) solution of{
∂tw = (A+ QnDf(v))w + Qnh,

Πn,vCw = Πn,vg.
(2.22)

It satisfies w(0) = w0 := O−1
n,vΠn,v [g −CIv(·)Qnh] and is given by w(t) = Sn(v)(t, 0)w0+Iv(t)Qnh.

We denote by w := Fn(v)(g, h) the associated solution operator. Moreover, we have the estimate

∥Fn(v)(g, h)∥C0([0,T ],QnXσ) ≤ C∥Πn,vg∥L2([0,T ],Xσ) + C∥Qnh∥L1([0,T ],Xσ) (2.23)

uniformly in v ∈ V and n ≥ n0, and the map

v ∈ V 7→ Fn(v) ∈ L(L2([0, T ], Xσ) × L1([0, T ], Xσ), C([0, T ],QnX
σ)) (2.24)

is Lipschitz-continuous and uniformly bounded with respect to n ≥ n0.

Proof. In view of Theorem 2.4, to be solution of the first line of (2.22), it is equivalent to be written
as a Duhamel formula

w(t) = Sn(v)(t, 0)w0 +

∫ t

0
Sn(v)(t, s)Qnh(s)ds, (2.25)

for some w0 ∈ QnX
σ. So, we need to compute w0 ∈ QnX

σ. Given the Duhamel’s formula, we have
w ∈ C0([0, T ],QnX

σ) ⊂ L2([0, T ],QnX
σ) and we can compute

Πn,vCw = Πn,vC [S(v, ·, 0)w0] + Πn,vC[Iv(·)Qnh].

Observe that if w0 ∈ QnX
σ, then C[S(v, ·, 0)w0] = On,vw0, and therefore Πn,vC[S(v, ·, 0)w0] =

Πn,vOn,vw0 = On,vw0 by definition of Πn,v.
Since both belong to Yn,v and we want Πn,vCw = Πn,vg, we should have

O−1
n,vΠn,vg = O−1

n,vΠn,vCw

= O−1
n,vCS(v, ·, 0)w0 + O−1

n,vΠn,vC[Iv(·)Qnh]

= w0 + O−1
n,vΠn,vC[Iv(·)Qnh].

With the initial data w0 given by the above formula, (2.25) is satisfied as well as the observability
condition Πn,vCw = Πn,vg. Indeed, it belongs to QnX

σ and by reproducing the same computation
backwards, we have

Πn,vCw = Πn,vC [S(v, ·, 0)w0 + Iv(·)Qnh] = Πn,vOnw0 + Πn,vCIv(·)Qnh

= Πn,vOnO−1
n Πn,v [g −CIv(·)Qnh] + Πn,vCIv(·)Qnh

= Πn,v [g −CIv(·)Qnh] + Πn,vCIv(·)Qnh = Πn,vg.

The uniqueness follows from the uniqueness of the definition of w0.
We now prove estimate (2.23). From Theorem 2.1, we have the estimate

∥w∥C([0,T ],QnXσ) ≤ C
(
∥w0∥Xσ + ∥Qnh∥L1([0,T ],Xσ)

)
,

where C is a constant uniform in V and n ≥ n0 ∈ N. Hence we are led to estimate w0. As a
consequence of Assumption 3, by using estimate (2.20), we get

∥w0∥Xσ = ∥O−1
n,vΠn,v [g −CIv(·)Qnh]∥Xσ

≤ Cobs∥Πn,vg∥L2([0,T ],Xσ) + Cobs∥Πn,vCIv(·)Qnh∥L2([0,T ],Xσ).

We now use the unitarity of Πn,v, Hölder’s inequality and Theorem 2.1 to obtain

∥Πn,vCIv(·)Qnh∥L2([0,T ],Xσ) ≤ ∥CIv(·)Qnh∥L2([0,T ],Xσ)

≤ ∥C∥L(Xσ)∥Iv(·)Qnh∥L2([0,T ],Xσ)
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≤ T 1/2∥C∥L(Xσ)∥Iv(·)Qnh∥L∞([0,T ],Xσ)

≤ C1T
1/2∥C∥L(Xσ)∥Qnh∥L1([0,T ],Xσ),

uniformly in v ∈ V and n ≥ n0 ∈ N. Gathering the previous estimates, we arrive to

∥w∥C0([0,T ],QnXσ) ≤ CCobs∥Πn,vg∥L2([0,T ],Xσ) + C
(

1 + C1T
1/2Cobs∥C∥L(Xσ)

)
∥Qnh∥L1([0,T ],Xσ).

In particular, the nonlinear map

v ∈ V 7−→ Fn(v) ∈ L(L2([0, T ], Xσ) × L1([0, T ], Xσ), C0([0, T ],QnX
σ)) (2.26)

is well-defined and bounded, uniformly with respect to n ≥ n0. To prove that it is Lipschitz-
continuous, we first use the explicit expression for the projector Πn,v given by Theorem 2.8 to
write

Fn(v)(g, h) = Sn(v)(·, 0)O−1
n,vΠn,v [g −CIv(·)Qnh] + Iv(·)Qnh

= Sn(v)(·, 0)
(
O∗

n,vOn,v

)−1O∗
n,v [g −CIv(·)Qnh] + Iv(·)Qnh.

From Theorem 2.1 and composition with linear maps, the map

v ∈ V 7−→ IvQn ∈ L(L1([0, T ], Xσ), C0([0, T ], QnX
σ))

is Lipschitz-continuous with constant uniform in n ∈ N. Furthermore, combining Theorem 2.1 and
Theorem 2.7, we obtain that the map

v ∈ V 7−→ Sn(v)(·, 0)
(
O∗

n,vOn,v

)−1O∗
n,v ∈ L(L2([0, T ], Xσ), C0([0, T ],QnX

σ)

is Lipschitz-continuous with constant uniform in n ≥ n0. Therefore, by composition of Lipschitz-
continuous maps, the map (2.26) is Lipschitz-continuous as well

∥Fn(v1) −Fn(v2)∥L(L2([0,T ],Xσ)×L1([0,T ],Xσ),C0([0,T ],Xσ)) ≤ C∥v1 − v2∥C0([0,T ],Xσ)

where C > 0 is a constant uniform in n ≥ n0. □

Remark 2.11. After Theorem 2.10, the fact that the operator Fn is bounded, implies that the map
(v, g, h) 7→ Fn(v)(g, v, h) is Lipschitz-continuous in the C0([0, T ], Xσ)×L2([0, T ], Xσ)×L1([0, T ], Xσ)-
topology whenever the pair (g, h) belongs to a bounded set of its corresponding space.

Lemma 2.12. Under the notation and Assumptions of Theorem 2.10, if we further enforce As-
sumption 2, and VK ⊂ V is a compact set in C0([0, T ], Xσ), there exists η > 0 such that the map
Fn restricted to VK admits a holomorphic extension as

FC
n : v ∈ VK + B[0,T ]

η,η (Xσ) 7−→ FC
n (v) ∈ LC(L2([0, T ], Xσ

C) × L1([0, T ], Xσ
C), C0([0, T ],QnX

σ
C)).
(2.27)

This extension is Lipschitz-continuous and bounded uniformly with respect to n ≥ n0. Furthermore,
there exists a constant C > 0 such that for any n ≥ n0 and v ∈ VK +Bη,η(Xσ) the following estimate
holds

∥FC
n (v)(g, h)∥C0([0,T ],QnXσ

C )
≤ C∥Πn,vg∥L2([0,T ],Xσ

C )
+ C∥Qnh∥L1([0,T ],Xσ

C )
, (2.28)

for any (g, h) ∈ L2([0, T ], Xσ
C) × L1([0, T ], Xσ

C).

Proof. After Theorem 2.10, we have an explicit formula for Fn, that is, if v ∈ V,

Fn(v)(g, h) = Sn(v)(·, 0)
(
O∗

n,vOn,v

)−1O∗
n,v

[
g −CIvQnh

]
+ Iv(·)Qnh,

for any (g, h) ∈ L2([0, T ], Xσ)×L1([0, T ], Xσ), where we used the explicit formula for the projector
Πn,v = On,v(O∗

n,vOn,v)−1O∗
n,v given by Theorem 2.8.
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From Theorem 2.6, Theorem 2.7 and Theorem A18, there exists η > 0 such that we have well-
defined holomorphic maps

SC
n : v ∈ VK + B[0,T ]

η,η (Xσ) 7−→ SC
n (v) ∈ LC(QnX

σ
C, C

0([0, T ],QnX
σ
C)),

G†
n : v ∈ VK + B[0,T ]

η,η (Xσ) 7−→ G†
n(v) ∈ LC(QnX

σ
C),

Ãdj : v ∈ VK + B[0,T ]
η,η (Xσ) 7−→ Ãdj(On,v) ∈ LC(L2([0, T ], Xσ

C),QnX
σ
C),

and on VK they coincide with their respective real counterparts restricted to VK . Similarly, by
linearity, we have the holomorphic map

v ∈ VK + B[0,T ]
η,η (Xσ) 7−→ IC

v (·)Qn ∈ LC(L1([0, T ], Xσ
C), C0([0, T ],QnX

σ
C)).

characterized by IC
v (t) : ξ 7→

∫ t
0 S

C
n (v)(t, s)ξ(s)ds. Also, C can be extended by linearity into

LC(QnX
σ
C). Following a similar argument as in the proof of Theorem 2.7, by composition, we have

a well-defined holomorphic map FC
n as specified in (2.27), characterized by the formula

FC
n (v)(g, h) = SC

n (v)(·, 0)G†
n(v)Ãdj(On,v)

[
g −CIC

v Qnh
]

+ IC
v (·)Qnh.

Given the above explicit formula and that all the maps involved in the definition are Lipschitz
continuous and bounded, by composition, so is FC

n uniformly with respect to n ≥ n0. Moreover, by
construction, on VK the map FC

n coincides with Fn restricted to VK , which finishes the proof. □

Remark 2.13. Note that we find a holomorphic extension of Fn restricted to VK rather than on
V, where it is initially defined. Moreover, this extension does not necessarily solve an observability
problem such as (2.22).

2.3.2. Finite determining modes. As a first direct consequence of the previous result, we can get
a finite determining mode result: two solutions of a nonlinear equation with the same observation
and the same low frequency modes are the same. This result will not be used directly later, but
can be considered as an easier version of what will follow where we will actually construct the
reconstruction operator and study its regularity.

Proposition 2.14. Let R0 > 0 and A ⊂ Xσ be a nonempty compact set. Under Assumptions 1, 2a

(with R0) and 3 (with T , R0, n0 and V = B[0,T ]
3R0

(Xσ,A)), there exists n ≥ n0 such that the following

holds. Let h ∈ L1([0, T ], Xσ) and g ∈ L2([0, T ], Xσ). Let u(t) and ũ(t) be two solutions on (0, T ) of{
∂tu = Au+ f(u) + h, on (0, T ),

Cu(t) = g(t), for t ∈ (0, T ),

such that u, ũ ∈ B[0,T ]
R0

(Xσ,A). If Pnu(t) = Pnũ(t) for all times t ∈ [0, T ], then u(t) ≡ ũ(t) for all

t ∈ [0, T ].

Proof. By assumption Pnu = Pnũ as applications in B[0,T ]
R0

(Xσ). Let z = u − ũ and note that it
solves {

∂tz = Az + f(u) − f(ũ)
Cz = 0.

If we linearize f around ũ, we can write

f(u) − f(ũ) = f(z + ũ) − f(ũ) = Df(ũ)z + H(ũ, z).

By assumption z = Qn(ũ− u) and thus by applying Qn to the equation satisfied by z, we get{
∂tz =

(
A+ QnDf(ũ)

)
z + QnH(ũ, z)

Cz = 0
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We are in the framework of Theorem 2.10, from which it follows z = Fn(ũ)
(
0,H(ũ, z)

)
along with

the estimate

∥z∥C0([0,T ],Xσ) ≤ C∥QnH(ũ, z)∥L1([0,T ],Xσ)

where C > 0 is uniform in n ≥ n0. Moreover, using that Df is Lipschitz-continuous we obtain

∥z∥C0([0,T ],Xσ) ≤ C∥z∥2C0([0,T ],Xσ)

and thus whether ∥z∥C0([0,T ],Xσ) = 0 or ∥z∥C0([0,T ],Xσ) ≥ 1/C. In the former case, we are done. In
the latter case, since z = Qn(u − ũ) and both u, ũ belong pointwise in time to the same compact
A ⊂ Xσ, we can find n ≥ n0 such that ∥z∥C0([0,T ],Xσ) < 1/C, given that C only depends on n0.
This yields z = 0 and consequently u = ũ. □

2.4. High-frequency nonlinear reconstruction. Let v ∈ B[0,T ]
3R0

(Xσ). We are now interested in
solving the nonlinear observability problem at high-frequency{

∂tw(t) = Aw + Qnf(v + w) + Qnh on [0, T ],
Πn,vCw = Πn,vg.

(2.29)

To this end, as explained at the beginning of this section, we will consider the linear variation of v
along QnDf(v) by writing

f(w + v) = f(v) +

∫ 1

0
Df(v + τw)wdτ = Df(v)w + f(v) + H(v, w).

This lead us to study the system{
∂tw(t) =

(
A+ QnDf(v)

)
w + Qn

(
f(v) + H(v, w)

)
+ Qnh

Πn,vCw = Πn,vg.
(2.30)

Under the assumptions of Theorem 2.10, it suggests that the initial condition of the above system
must be given by

w0 = O−1
n,vΠn,v

[
g −CIvQn(f(v) + H(v, w) + h)

]
.

This yields the nonlinear operator Φn,v,h,g : C0([0, T ],QnX
σ) → C0([0, T ],QnX

σ) defined by

Φn,v,h,g(w) = Fn(v)
(
g, f(v) + H(v, w) + h

)
. (2.31)

We are then led to seek for fixed points of the operator Φn,v,h,g. Indeed, as a consequence of the
above formula, a fixed point of Φn,v,h,g is a solution of (2.30).

The aim of this section is to prove the following reconstruction result.

Proposition 2.15. (High-frequency reconstruction map) Let T > 0, R0 > 0, R1 > 0 and n0 ∈ N.
Let A1 and A2 be two nonempty compact subsets of Xσ which are stable under the projection Pn.

Assume that Assumptions 1, 2a (with R0) and 3 (with T , R0, n0 and V = B[0,T ]
3R0

(Xσ,A1)) hold.

There exist n∗ ≥ n0, η > 0 and 0 < R < R0 such that, for any n ≥ n∗, for any v ∈ B[0,T ]
3R0

(Xσ,A1),

h ∈ B[0,T ]
R1

(Xσ,A2) and g ∈ Bη(L2([0, T ], Xσ)), there exists a unique solution w ∈ B[0,T ]
R (QnX

σ) of{
∂tw(t) = Aw + Qnf(v + w) + Qnh,

Πn,vCw = Πn,vg.
(2.32)

This defines a nonlinear Lipschitz reconstruction operator

R :

{
B[0,T ]
3R0

(Xσ,A1) × B[0,T ]
R1

(Xσ,A2) × Bη(L2([0, T ], Xσ)) −→ B[0,T ]
R (QnX

σ)
(v, h, g) 7−→ w := R(v, h, g).

(2.33)



24 UNIQUE CONTINUATION AND STABILIZATION FOR NLS UNDER THE GCC

Furthermore, if additionally, f satisfies Assumption 2 and VK ⊂ B[0,T ]
3R0

(Xσ,A1) is nonempty and

compact in C0([0, T ], Xσ), then there exist η > 0 and η1 > 0, so that the map R restricted to VK

in the first variable extends holomorphically as

R :
(
VK + B[0,T ]

η,η (Xσ)
)
×
(
B[0,T ]
R1

(Xσ,A2) + B[0,T ]
η,η (Xσ)

)
× Bη,η(L2([0, T ], Xσ

C)) −→ B[0,T ]
R,η1

(QnX
σ). (2.34)

Remark 2.16. The compactness in space is related to the existence of the reconstruction operator,
whereas the compactness in time-space allows us to find a holomorphic extension uniformly with
respect to the input acting trough the nonlinearity.

Remark 2.17. Similar to Theorem 2.13, we find a holomorphic extension of the reconstruction

operator R when its first variable is restricted to a compact subset VK of B[0,T ]
3R0

(Xσ,A), where it
was initially defined. This suggests that such extension is not necessarily a reconstruction operator
anymore. However, to not over complicate the notation we keep the same letter to denote this
extension.

Proof of Theorem 2.15. In view of Theorem 2.10, we are looking for w solution of

w = Fn(v)
(
g, f(v) + H(v, w) + h

)
.

We thus consider the nonlinear operator Φ defined by

Φn,v,h,g(w) = Fn(v)
(
g, f(v) + H(v, w) + h

)
.

We will prove that it is well-defined as a map from C0([0, T ],QnX
σ) into itself and that it has a

fixed point in a small ball, which also satisfies (2.32). Without keeping track of the dependence
on the parameters, we simplify the notation by writing Φv := Φn,v,h,g. Also, for simplicity we will
assume that A1 and A2 are the same compact set, which we simply denote by A. This simplification
is harmless in the proof and only serves to simplify the notation.

Step 1. Fixed point: real-valued case. We will prove Φ is a contraction in the ball B[0,T ]
R (QnX

σ),
for some R > 0 to be specified later.

Let w ∈ B[0,T ]
R (QnX

σ). By using estimate (2.23) of Theorem 2.10, we get

∥Φv(w)∥C0([0,T ],QnXσ) = ∥Fn(v)
(
g, f(v) + H(v, w) + h

)
∥C0([0,T ],QnXσ)

≤ C∥Πn,vg∥L2([0,T ],Xσ) + C∥Qn(f(v) + H(v, w) + h)∥L1([0,T ],Xσ),

for a constant C uniform in n ≥ n0 ∈ N and v ∈ B[0,T ]
3R0

(Xσ,A).

To estimate the first term we note that, for any v ∈ B[0,T ]
3R0

(Xσ,A), Πn,v is a projection on

L2([0, T ], Xσ), and thus for g ∈ Bη(L2([0, T ], Xσ)) we have

∥Πn,vg∥L2([0,T ],Xσ) ≤ ∥g∥L2([0,T ],Xσ) ≤ η.

For the second term, under Assumption 2a, the differential Df is Lipschitz of constant L, thus

∥QnH(v, w)∥L1([0,T ],Xσ) ≤
∫ T

0

(∫ 1

0
∥Df(v + τw) −Df(v)∥L(Xσ)dτ

)
∥w∥Xσdt

≤ TL∥w∥2C0([0,T ],Xσ).

Since f : Xσ → Xσ is continuous and A is compact in Xσ, we have that f(A) is compact in Xσ. In

particular, we observe that {f(v(t)) | v ∈ B[0,T ]
3R0

(Xσ,A), t ∈ [0, T ]} ⊂ f(A). Since the sequence of

high-frequency projectors (Qn)n converge pointwise to 0, the compactness of f(A) gives us that, for

any η0 > 0, we can find n∗ ≥ n0 so that for any v ∈ B[0,T ]
3R0

(Xσ,A) we have ∥Qnf(v)∥L1([0,T ],Xσ) ≤ η0/2
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for all n ≥ n∗. Similarly, we get that ∥Qnh∥L1([0,T ],Xσ) ≤ η0/2 for all n ≥ n∗. Gathering the previous
estimates, we obtain

∥Φv(w)∥C0([0,T ],QnXσ) ≤ C(η + η0) + CTLR2. (2.35)

Concerning the difference, for w1, w2 ∈ B[0,T ]
R (QnX

σ), we observe that

∥Φv(w1) − Φv(w2)∥C0([0,T ],QnXσ) = ∥Fn(v)(0,H(v, w1) −H(v, w2))∥C0([0,T ],QnXσ)

≤ C∥H(v, w1) −H(v, w2)∥L1([0,T ],Xσ).

A simple computation gives us

H(v, w1) −H(v, w2)

=

∫ 1

0

(
[Df(v + τw1) −Df(v)](w1 − w2) − [Df(v + τw1) −Df(v + τw2)]w2

)
dτ. (2.36)

Thus

∥H(v, w1) −H(v, w2)∥L1([0,T ],Xσ) ≤ CL
(
∥w1∥C0([0,T ],Xσ) + ∥w2∥C0([0,T ],Xσ)

)
∥w1 − w2∥C0([0,T ],Xσ).

We deduce

∥Φv(w1) − Φv(w2)∥C0([0,T ],QnXσ) ≤ 2RCL∥w1 − w2∥C0([0,T ],Xσ). (2.37)

In view of inequalities (2.35) and (2.37), if we choose R = min{ 1
4CL ,

1
2TL , R0} and η0 small enough,

then there exist η > 0 and n ≥ n∗ so that Φv reproduces the ball B[0,T ]
R (QnX

σ) and is contracting
in such set.

We have then a well-defined reconstruction map

R : (v, h, g) ∈ B[0,T ]
3R0

(Xσ,A) × B[0,T ]
R1

(Xσ,A) × Bη(L2([0, T ], Xσ)) 7−→ w ∈ B[0,T ]
R (QnX

σ).

The fact that R is Lipschitz, follows from composition of Lipschitz maps. As we did to get inequality
(2.37), under Assumption 2a, we get that

∥H(v1, w1) −H(v2, w2)∥L1([0,T ],Xσ) ≤ 2RCL∥w1 − w2∥C0([0,T ],Xσ) + 2R0CL∥v1 − v2∥C0([0,T ],Xσ).

Thus, (v, w) 7→ f(v)+H(v, w) is a Lipschitz-continuous map. Using Theorem 2.10 and Theorem 2.11,
by linearity in the variables h and g and by composition of Lipschitz maps, we get

∥Φn,v1,h1,g1(w1) − Φn,v2,h2,g2(w2)∥C0([0,T ],Xσ) ≤ CR∥w1 − w2∥C0([0,T ],Xσ)

+ C
(
∥v1 − v2∥C0([0,T ],Xσ) + ∥h1 − h2∥C0([0,T ],Xσ) + ∥g1 − g2∥L2([0,T ],Xσ)

)
.

Since the fixed points are given by Φn,vi,hi,gi(wi) = wi for i = 1, 2, up to making R smaller if
necessary, we get that R is Lipschitz-continuous.

Step 2. Complex extension. Under Assumption 2, by Theorem 2.12, there exists η > 0 such that we
have a well-defined holomorphic map FC

n , extension of the map Fn restricted to VK , that is,

v ∈ VK + B[0,T ]
η,η (Xσ) 7−→ FC

n (v) ∈ LC(L2([0, T ], Xσ
C) × L1([0, T ], Xσ

C), C0([0, T ],QnX
σ
C)). (2.38)

Let η1 > 0 to be fixed later. Let us consider ΦC
n given by

ΦC
n(h, g, v, w) := FC

n (v)
(
g, f(v) + H(v, w) + h

)
for

v ∈ VK + B[0,T ]
η,η (Xσ), h ∈ B[0,T ]

R1
(Xσ,A) + B[0,T ]

η,η (Xσ), g ∈ Bη,η(L2([0, T ], Xσ)), w ∈ B[0,T ]
R,η1

(QnX
σ).

We need to verify that this map is well-defined. By linearity of FC
n (v) with respect to g and h, as

well as by the linearity of Qn, it only remains to check that the map (v, w) 7→ f(v) +H(v, w) is well-
defined. By Assumption 2, up to making constants smaller, as long as η + η1 ≤ 3δ/2 and R + η ≤
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3R0/4, for v ∈ VK + B[0,T ]
η,η (Xσ) and w ∈ B[0,T ]

R,η1
(QnX

σ), we have v + τw ∈ B[0,T ]
3R0+η+R,η+η1

(Xσ) ⊂
B[0,T ]
4R0,2δ

(Xσ) for any τ ∈ [0, 1]. Therefore, the map (v, w) 7→ f(v) + H(v, w) is well-defined from

VK + B[0,T ]
η,η (Xσ) × B[0,T ]

R,η1
(QnX

σ) into C0([0, T ], Xσ
C), and thus into L1([0, T ], Xσ

C) as well.

Let v = v1 + z with v1 ∈ B[0,T ]
3R0

(Xσ,A) and z ∈ B[0,T ]
η,η (Xσ). By employing Theorem 2.7 and

Theorem 2.8, there exists C > 0 independent of v and n ≥ n0 such that

∥Πn,vg∥L2([0,T ],Xσ
C )

≤ Cη.

For h ∈ B[0,T ]
R1

(Xσ,A) +B[0,T ]
η,η (Xσ), using the compactness of A to control the real part, we have for

n ≥ n∗

∥Qnh∥L1([0,T ],Xσ
C )

≤ η0
2

+ Tη

A Taylor development around v1 allows us to write f(v) = f(v1) +
∫ 1
0 Df(v1 + τz)zdτ and thus

∥Qnf(v)∥L1([0,T ],Xσ
C )

≤ ∥Qnf(v1)∥L1([0,T ],Xσ
C )

+M∥z∥L1([0,T ],Xσ
C )

≤ η0
2

+ 2TMη.

For the last term, we have

∥QnH(v, w)∥L1([0,T ],Xσ
C )

≤
∫ T

0

(∫ 1

0
∥Df(v + τw) −Df(v)∥L(Xσ

C )
dτ

)
∥w∥Xσ

C
dt

≤ TL∥w∥2C0([0,T ],Xσ
C )

≤ TL(R+ η1)
2.

Let us remark that the above estimates are all uniform with respect to n ≥ n∗.
As we did in the real-valued case, but instead under Assumption 2, by Theorem 2.12, we have

∥ΦC
n(w)∥C0([0,T ],Xσ

C )
≤ C

(
∥Πn,vg∥L2([0,T ],Xσ

C )
+ ∥Qn(f(v) + H(v, w) + h)∥L1([0,T ],Xσ

C )

)
and hence, for a possibly different constant C > 0 depending on the previous bounds, we have

∥ΦC
n(w)∥C0([0,T ],Xσ

C )
≤ C(η + η0) + C(R+ η1)

2.

Similarly, we have

∥ΦC
n(w1) − ΦC

n(w2)∥C0([0,T ],Xσ
C )

≤ 2CL(R+ η1)∥w1 − w2∥C0([0,T ],Xσ
C )
.

Up to shrinking both R and η if necessary, for η0 small enough we can choose η1 > 0 such that ΦC
n is

contracting and reproduces the cylinder B[0,T ]
R,η1

(QnX
σ). Since the map ΦC

n is a complex extension of
the real map Φn from Step 1. when its first variable is restricted to VK , it follows by uniqueness of the
fixed point that R as specified in (2.34) coincides with the complex extension of the reconstruction
map (2.33) when restricted to VK in the first variable.

Step 3. Regularity of the fixed point. By Theorem A20, that the map (v, h, g) 7→ w = R(v, h, g)
as specified in (2.34) is holomorphic follows by proving that the map (v, w, h, g) 7→ ΦC

n,h,g,v(w)

is holomorphic. Moreover, in view of Theorem A13, it is enough to prove that the map ΦC
n is

holomorphic in each one of its variables separately whilst the remaining ones are held fixed. Since

for each v ∈ VK + B[0,T ]
η,η (Xσ) the map FC

n (v) is a linear continuous operator, the holomorphicity
with respect to h and g is clear. It remains to check that ΦC

n is holomorphic in v and w, separately
First, to check that ΦC

n is holomorphic with respect to v, by linearity of FC
n it is enough to check

that the map

Jn : v ∈ VK + B[0,T ]
η,η (Xσ) 7−→ FC

n (v)
(
g, f(v) + H(v, w)

)
∈ C0([0, T ],QnX

σ
C) (2.39)
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is complex differentiable, with g ∈ Bη,η(L2([0, T ], Xσ)) and w ∈ B[0,T ]
R,η1

(QnX
σ) being held fixed.

First, note that the map

v ∈ VK + B[0,T ]
η,η (Xσ) 7−→ f(v) + H(v, w) ∈ C0([0, T ], Xσ

C)

is holomorphic. Indeed, on the one hand, under Assumption 2 we can easily extend f as a holomor-

phic map v ∈ VK + B[0,T ]
η,η (Xσ) 7→ f(v) ∈ C0([0, T ], Xσ

C). On the other hand, as we did in the proof
of Theorem 2.6, we can check that Hw : v 7→ H(v, w) is complex differentiable and its differential

dHw : VK + B[0,T ]
η,η (Xσ) 7−→ LC(C0([0, T ], Xσ

C)) is characterized by

dHw(v)h =

∫ 1

0

(
D2f(v + τw) −D2f(v)

)
[h,w]dτ,

and therefore the claim follows. Let us now consider the following (nonlinear) operators.

• Let Sn : v 7−→
(
FC
n (v)(g, ·), f(v) + Hw(v))

)
be defined as a map from VK + B[0,T ]

η,η (Xσ) into

LC(L1([0, T ], Xσ
C), C0([0, T ],QnX

σ
C)) × C0([0, T ], Xσ

C). From Theorem 2.10 and the linear
continuous embedding C0([0, T ], Xσ

C) ↪→ L1([0, T ], Xσ
C), we see that the first coordinate

defining Sn is holomorphic. Moreover, by the previous discussion, its second coordinate is
holomorphic as well, and therefore Sn is a holomorphic map.

• The evaluation map E : (T, ψ) 7→ Tψ defined from LC(L1([0, T ], Xσ
C), C0([0, T ],QnX

σ
C)) ×

L1([0, T ], Xσ
C) into C0([0, T ],QnX

σ
C) is linear on each coordinate and thus holomorphic.

By noticing that (2.39) can be written as Jn = ESn, by composition of holomorphic maps, we get

that Jn is holomorphic as well on VK + B[0,T ]
η,η (Xσ). A similar argument, but simpler, proves that

ΦC
n is holomorphic with respect to w when the other variables are held fixed. This finishes the

proof. □

2.5. Analyticity in time of the observed solution. In this section we prove Theorem 1.8.
The main building block is the following reconstruction result, where we show the existence of a
holomorphic operator that allows us to reconstruct the high-frequency component for the solutions
of our nonlinear system by means of the low-frequency component as an input.

Theorem 2.18. Let T > 0, R0 > 0, R1 > 0 and n0 ∈ N. Let A be a nonempty compact subset of
Xσ which is stable under the projection Pn. Assume that Assumptions 1, 2a (with R0) and 3 (with

T , R0, n0 and V = B[0,T ]
3R0

(Xσ,A + A)) are enforced. Then, there exist n ≥ n0, 0 < R < R0 and a
nonlinear Lipschitz reconstruction operator R

R : B[0,T ]
R0

(PnX
σ,A) × B[0,T ]

R0
(Xσ,A) × B[0,T ]

R1
(Xσ,A) −→ B[0,T ]

R (QnX
σ) (2.40)

so that, for any u ∈ B[0,T ]
R0

(Xσ,A), h1 ∈ B[0,T ]
R0

(Xσ,A) and h2 ∈ B[0,T ]
R1

(Xσ,A) satisfying{
∂tu = Au+ f(u+ h1) + h2 in [0, T ],

Cu(t) = 0 t ∈ [0, T ],
(2.41)

then Qnu = R(Pnu, h1, h2). Moreover, if additionally, Assumption 2 is enforced and K is a
nonempty compact subset of C0([0, T ], Xσ) which is stable under the projection Pn, there exist

η, η1 > 0 so that if h1 ∈ B[0,T ]
R0

(Xσ,A) ∩ K, for any u ∈ B[0,T ]
R0

(Xσ,A) ∩ K solution of (2.41), then
R with its first variable restricted to an η-neighborhood of Pnu extends holomorphically as

R :
(
Pnu+ B[0,T ]

η,η (PnX
σ)
)
×
(
B[0,T ]
R0

(Xσ,A) ∩ K + B[0,T ]
η,η (Xσ)

)
×
(
B[0,T ]
R1

(Xσ,A) + B[0,T ]
η,η (Xσ)

)
−→ B[0,T ]

R,η1
(QnX

σ). (2.42)

Remark 2.19. In practical applications, most of the time A will be a bounded ball in Xσ+ε for some
ε > 0, which is stable under Pn and compact in Xσ as a consequence of Assumption 1.
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Proof. Let us consider a cutoff function χ ∈ C∞
c (R, [0, 1]), whose support is contained in [−1, 1] and

satisfies χ(s) = 1 for s ∈ [−1/2, 1/2]. We define R as

R(v, h1, h2) = R(v + h1, h2,−χ(η−1∥Cv∥L2([0,T ],Xσ))Cv), (2.43)

where n∗ ≥ n0, η > 0, 0 < R < R0 and the operator R are given from Theorem 2.15, with
A1 := A + A and A2 := A.

Observe that χ(η−1∥Cv∥L2([0,T ],Xσ)) = 0 if ∥Cv∥L2([0,T ],Xσ) ≥ η, so that we always have

∥χ(η−1∥Cv∥L2([0,T ],Xσ))Cv∥L2([0,T ],Xσ) ≤ η.

Also, v+ h1 ∈ B[0,T ]
2R0

(Xσ,A+A) for every n ∈ N. In particular, R is a well-defined map as precised

in (2.40) with n ≥ n∗.
Now, we want to check the requirements to ensure the reconstruction property. Let u be as in

the theorem and solution of (2.41). Let us recall that u = Pnu + Qnu is a mild solution of (2.41)

in B[0,T ]
R0

(Xσ,A). For every n ∈ N, since PnX
σ is finite dimensional and the operators A and Pn

commute, v := Pnu is a mild solution of

∂tv(t) = Av(t) + Pnf(u(t) + h1(t)) + Pnh2(t),

and it belongs to B[0,T ]
R0

(PnX
σ). By hypothesis u(t) ∈ A for all t ∈ [0, T ], and since A is stable

under Pn, it follows that Pnu ∈ B[0,T ]
R0

(PnX
σ,A). Additionally, we need to check that, for n ≥ n∗

large enough, we can impose CPnu and Qnu to be small enough in Xσ. Given that A is compact,
utilizing the equation CPnu = −CQnu, the continuity of the operator C and that (Qn)n is pointwise
convergent to 0, for any η > 0 we can find n1 ≥ n∗ independent of u, so that for any n ≥ n1,

∥CPnu∥L2([0,T ],Xσ) = ∥CQnu∥L2([0,T ],Xσ) ≤ η/4.

Similarly, we can find n2 ≥ n1 such that Qnu ∈ B[0,T ]
R (QnX

σ). Now, let us fix n ≥ n2. Then, if
w := R(v, h1, h2), by definition of R we have that

w = R(Pnu+ h1, h2,−CPnu)

is the unique solution in B[0,T ]
R (QnX

σ) to{
∂tw = Aw + Qnf(Pnu+ w + h1) + Qnh2,

Πn,Pnu+h1Cw = −Πn,Pnu+h1CPnu.

Further, notice that Qnu ∈ C0([0, T ],QnX
σ) solves{

∂tQnu = AQnu+ Qnf(Pnu+ Qnu+ h1) + Qnh2,
Πn,Pnu+h1CQnw = −Πn,Pnu+h1CPnu

and it belongs to B[0,T ]
R (QnX

σ). Note that A+A is compact and stable under Pn. Since Pnu+h1 ∈
B[0,T ]
2R0

(PnX
σ,A + A), h2 ∈ B[0,T ]

R1
(Xσ,A) and −CPnu ∈ Bη(L2([0, T ], Xσ)), by definition of R, we

have Qnu = R(Pnu+ h1, h2,−CPnu) and therefore w = Qnu = R(v, h1, h2).
In regards to the holomorphic extension, we check the required properties. If v is complex-valued,

in (2.43) instead we consider χ(η−1∥Cv∥L2([0,T ],Xσ
C )

). Observe that K + K is stable under Pn. Let

us consider VK := B[0,T ]
3R0

(Xσ,A + A) ∩ (K + K), which by hypothesis is compact in C0([0, T ], Xσ).
Further, by adjusting n if necessary, the compactness of A provide us with the bound

∥CPnu∥L2([0,T ],Xσ) ≤ η/4.

Given the explicit form of the complex extension of linear operators, the map v 7→ χ(η−1∥Cv∥L2([0,T ],Xσ
C )

)

is constant equal to 1 around Pnu ∈ VK and consequently, holomorphic in some neighborhood
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Pnu + B[0,T ]
η1,η1(PnX

σ) for η1 > 0 small enough. Moreover, up to making η1 smaller if needed, say
η1 ≤ η/3, we see that(

Pnu+ B[0,T ]
η1,η1(PnX

σ)
)

+
(
B[0,T ]
R0

(Xσ,A) ∩ K + B[0,T ]
η1,η1(Xσ)) ⊂ VK + B[0,T ]

η,η (Xσ).

Thus, the holomorphic extension of (2.43), as specified in (2.42), is a consequence of Theorem 2.15,
up to renaming η1 as η. □

2.5.1. Analyticity in time. Here we prove the main theorem of this section, that is the abstract
Theorem 1.8 of analytic regularity stated in the introduction.

Proof of Theorem 1.8. First, by hypothesis u ∈ B[0,T ∗]
R0

(Xσ,A) ∩K. Since τ 7→ maxτ∈[0,T ∗]∥ℑh1(t+

iτ)∥Xσ is a continuous function on [−µ, µ] that is equal to zero at τ = 0, there exists 0 < µ′ < µ
so that maxt∈[0,T ] |ℑh1(t+ iτ)| ≤ η for τ ∈ [−µ′, µ′], where η is given by Theorem 2.18. We can do
the same for h2. We denote R1 = maxz∈[0,T ∗]+i[−µ,µ]∥h2(z)∥Xσ .

Let n ≥ n∗, η > 0, 0 < R < R0 and R be given by Theorem 2.18 with the chosen R1.
Let 0 < ν < T ∗−T . With these two choices, for each s ∈ [−ν, T ∗−T −ν] let us denote by hs1 the

application t 7→ h1(t+ ν + s), which belongs to B[0,T ]
R0

(Xσ,A). Moreover, the application s 7→ hs1 is

continuous. Indeed, since t ∈ [0, T ∗] 7→ h1(t) ∈ Xσ is a continuous map defined on a compact set,
it is uniformly continuous. Hence, for every ε > 0 and any t ∈ [0, T ], there exists δ > 0 so that for
any s, s0 ∈ [−ν, T ∗−T − ν] with |(s+ t)− (s0 + t)| ≤ δ, then ∥h1(t+ ν+ s)− h1(t+ ν+ s0)∥Xσ ≤ ε.
Since the later property does not depend on t, we can take supt∈[0,T ] in the last inequality to obtain

that ∥hs1 − hs01 ∥C0([0,T ],Xσ) ≤ ε. We do the same for h2, so we have hs2 ∈ B[0,T ]
R1

(Xσ,A) for any

s ∈ [−ν, T ∗ − T − ν] and moreover the map s 7→ hs2 is uniformly continuous.

Step 1. Time-shifted reconstruction operator . Let us define for s ∈ [−ν, T ∗ − T − ν], us as the

application t 7→ u(t+ s+ ν), which belongs to B[0,T ]
R0

(Xσ,A). Let us decompose u = Pnu+ Qnu =:

v + w and similarly us = vs + ws. For any fixed s ∈ [−ν, T ∗ − T − ν], that u satisfies (1.8) implies{
∂tu

s = Aus + f(us + hs1) + hs2 on [0, T ],
Cus(t) = 0 for t ∈ [0, T ].

Since A is stable under Pn, we obtain that for any fixed s ∈ [−ν, T ∗ − T − ν] we have vs ∈
B[0,T ]
R0

(PnX
σ,A). Then Theorem 2.18 gives

ws = Qnu
s = R(Pnu

s, hs1, h
s
2) = R(vs, hs1, h

s
2), (2.44)

with equality meant in C0([0, T ],QnX
σ). If we denote

g := Pnf(u+ h1) + Pnh2 = Pnf(v + w + h1) + Pnh2 ∈ C0([0, T ∗],PnX
σ),

then v ∈ C1([0, T ∗],PnX
σ) solves

∂tv = PnAv + g, on [0, T ∗]. (2.45)

With the related notations (see Section A), Theorem A2 implies

∂sv
s = PnAv

s + gs, on [−ν, T ∗ − T − ν]. (2.46)

Furthermore, since R0 +R ≤ 2R0, for any s ∈ [−ν, T ∗ − T − ν], , by using equality (2.44),

gs = Pnf(v
s + ws + hs1) + Pnh

s
2 = Pnf

(
vs + R(vs, hs1, h

s
2) + hs1

)
+ Pnh

s
2,

with equality in C0([0, T ], Xσ). This motivates us to introduce the map{
f̃ : [−ν, T ∗ − T − ν] × B[0,T ]

R0
(PnX

σ,A) −→ C0([0, T ],PnX
σ)

(s, ṽ) 7−→ Pnf
(
ṽ + R(ṽ, hs1, h

s
2) + hs1

)
+ Pnh

s
2.
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This application is well-defined, continuous (by algebra of continuous functions) and Lipschitz-
continuous with respect to the second variable (by Assumption 2, that R is Lipschitz and compo-
sition of Lipschitz maps).

Observe that hs1 ∈ B[0,T ]
R0

(Xσ,A), hs2 ∈ B[0,T ]
R1

(Xσ,A) and ṽ ∈ B[0,T ]
R0

(PnX
σ,A) imply, by construc-

tion, that ṽ+R(ṽ, hs1, h
s
2)+hs1 ∈ B[0,T ]

3R0
(Xσ) for all s ∈ [−ν, T ∗−T−ν]. Therefore f(ṽ+R(ṽ, hs1, h

s
2)+hs1)

is well defined and so is f̃. Recall that R is Lipschitz on its variables, that is, there exists C > 0
such that

∥R(ṽ, hs1, h
s
2) −R(ṽ∗, hs

∗
1 , h

s∗
2 )∥C0([0,T ],Xσ) ≤ C

(
∥ṽ − ṽ∗∥C0([0,T ],Xσ)

+ ∥hs1 − hs
∗
1 ∥C0([0,T ],Xσ) + ∥hs2 − hs

∗
2 ∥C0([0,T ],Xσ)

)
,

for any ṽ, ṽ∗ ∈ B[0,T ]
R0

(PnX
σ) and s, s∗ ∈ [−ν, T ∗ − T − ν]. The continuity of f̃ then follows by the

continuity of s 7→ (hs1, h
s
2), Assumption 2 and by algebra of continuous maps. The same estimate

along with Assumption 2 shows that

∥̃f(s, ṽ) − f̃(s, ṽ∗)∥C0([0,T ],PnXσ) ≤ C∥ṽ − ṽ0∥C0([0,T ],PnXσ),

for any ṽ, ṽ∗ ∈ B[0,T ]
R0

(PnX
σ) and s ∈ [−ν, T ∗ − T − ν].

Step 2. Holomorphic extensions. First, let us consider the following application

Ψ : (s, ϕ) ∈ [−ν, T ∗ − T − ν] ×K 7−→ Ψ(s, ϕ) = ϕs ∈ C0([0, T ], Xσ),

which is continuous since translation and restriction in time are both continuous applications. We

thus consider the compact set K̃ defined as the image of the compact set [−ν, T ∗−T −ν]×K under

Ψ, which has the property that ϕs ∈ K̃ for any (s, ϕ) ∈ [−ν, T ∗−T −ν]×K. Additionally, K̃ inherits

the stability under Pn from that of K. Therefore, since both u and h1 belong to B[0,T ∗]
R0

(Xσ,A)∩K,

and by hypothesis both A and K are stable under Pn, it follows that vs0 ∈ B[0,T ]
R0

(PnX
σ,A)∩K̃ and

hs01 ∈ B[0,T ]
R0

(Xσ,A) ∩ K̃ for any s0 ∈ [−ν, T ∗ − T − ν].

We claim that for any s0 ∈ (−ν, T ∗ − T − ν), there exists ρ > 0 such that, if we restrict f̃ to

[−ν, T ∗ − T − ν] × B[0,T ]
R0

(PnX
σ,A) ∩ K̃, it admits a holomorphic extension around (s0, v

s0), given
by {

f̃C : BC(s0, ρ) ×
(
vs0 + B[0,T ]

η,η (PnX
σ)
)

−→ C0([0, T ],PnX
σ
C)

(z, ṽ) 7−→ Pnf(ṽ + R(ṽ, hz1, h
z
2) + hz1

)
+ Pnh

z
2.

(2.47)

Since K̃ is compact and stable under Pn, there exists η1 > 0 such that, if the first variable of R is

restricted to B[0,T ]
R0

(PnX
σ) ∩ K̃, it has a holomorphic extension around vs0 given by Theorem 2.18,

R :
[
vs0 + B[0,T ]

η,η (PnX
σ)
]
×
[
B[0,T ]
R0

(Xσ,A) ∩ K̃ + B[0,T ]
η,η (Xσ)

]
×
(
B[0,T ]
R1

(Xσ,A) + B[0,T ]
η,η (Xσ)

)
−→ B[0,T ]

R,η1
(QnX

σ).

We need to argue that, the application z 7→ hz1 is holomorphic from BC(s0, ρ) with value in
C0([0, T ], Xσ

C) for ρ > 0 small enough, and that the same holds for z 7→ hz2 from BC(s0, ρ) with
value in C0([0, T ], Xσ

C). Indeed, since

z ∈ [0, T ∗] + i[−µ′, µ′] 7→ h1(z) ∈ Xσ
C

is holomorphic in the open strip and continuous up to the boundary, for each s0 ∈ [−ν, T ∗ − T − ν]
we can find ρ > 0 such that, for any t ∈ [0, T ], the application

z ∈ BC(s0, ρ) 7−→ h1(z + t+ ν) ∈ Xσ
C
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is holomorphic and continuous up to the boundary. By using Cauchy estimates and the bound on
h1(z), for each t ∈ [0, T ] and any z0 ∈ BC(s0, ρ), we can find ℓ > 0 such that

∥h1(z + h+ t+ ν) − h1(z + t+ ν) − δh1(z + t+ ν, h)∥Xσ
C
≤ 4(R0 + η)|h|2

ℓ(ℓ− 2|h|)
≤ 8(R0 + η)|h|2

ℓ2

holds uniformly for all z ∈ BC(z0, ℓ/4) and |h| ≤ ℓ/4. Moreover, the last estimate is independent of
t ∈ [0, T ], so we actually have

∥hz+h
1 − hz1 − δh1(z + · + ν, h)∥C0([0,T ],Xσ

C )
≤ 8(R0 + η)|h|2

ℓ2
,

uniformly for all z ∈ BC(z0, ℓ/4) and |h| ≤ ℓ/4. Further, by uniform continuity, up to shrinking
ρ > 0, we have that ∥hz1 − hs01 ∥C0([0,T ],Xσ

C )
≤ η whenever |z − s0| ≤ ρ, that is, hz1 lies in a η-

neighborhood of B[0,T ]
R0

(Xσ,A) ∩ K̃. In summary, we showed that the application

z ∈ BC(s0, ρ) 7−→ hz1 ∈ B[0,T ]
R0

(Xσ,A) ∩ K̃ + B[0,T ]
η,η (Xσ)

is well-defined and holomorphic. The argument works similarly to show that z ∈ BC(s0, ρ) 7→ hz2 ∈
B[0,T ]
R0

(Xσ,A) + B[0,T ]
η,η (Xσ) is holomorphic.

By composition of holomorphic functions and Theorem A13 we get that{
BC(s0, ρ) ×

[
vs0 + B[0,T ]

η,η (PnX
σ)
]

→ B[0,T ]
R,η1

(QnX
σ)

(z, ṽ) 7→ R(ṽ, hz1, h
z
2)

is a well-defined and holomorphic map. As long as 2η + η1 ≤ 3δ0/2, that the extension f̃C defined
in (2.47) is holomorphic follows from Assumption 2, algebra of holomorphic maps, and that Pn is
a linear bounded operator.

Step 3. ODE regularity argument . Observe that for any s ∈ [−ν, T ∗ − T − ν], we proved that

gs = f̃(s, vs). Therefore, equation (2.46), verified by vs, can be rewritten as

∂sv
s = PnAv

s + f̃(s, vs), on [−ν, T ∗ − T − ν]. (2.48)

We now consider the following ODE, locally defined in the Banach space C0([0, T ],PnX
σ),{

∂sξ(s) = PnAξ(s) + f̃C(s, ξ(s)),
ξ(s0) = vs0 ,

(2.49)

where f̃C is the map (2.47). Observe that C0([0, T ],PnX
σ) is of infinite dimension. However, it

can be checked that PnA is a linear bounded operator on this space. Theorem A1 shows that
vs, which solves (2.49) as a time-dependent Banach valued map, also solves the ODE in the usual

sense. Since f̃C is holomorphic and given its mapping properties (2.47), PnA + f̃C is holomorphic

from BC(s0, ρ) ×
[
vs0 + B[0,T ]

η,η (PnX
σ)
]

into C0([0, T ], Xσ
C). By classical theory of ODEs in Banach

spaces [Die69, Theorem 10.4.5], we obtain a unique classical solution of (2.49),

ξ : BC(s0, ρ
′) 7→ ṽ(z) ∈ C0([0, T ],PnX

σ
C),

for some 0 < ρ′ < ρ. Moreover, such a solution map inherits the regularity of the right-hand side of
the ODE it satisfies, therefore it is a holomorphic map. Since the map s ∈ [−ν, T ∗ − T − ν] 7→ vs ∈
B[0,T ]
R0

(PnX
σ,A) is uniformly continuous, up to shrinking ρ′, we have that vs ∈ vs0 +B[0,T ]

η (PnX
σ,A)

for every s ∈ (s0 − ρ′, s0 + ρ′) and then by construction f̃C(s, vs) = f̃(s, vs). In view of (2.48) and
by uniqueness of solutions, we have ξ(s) = vs for s ∈ (s0 − ρ′, s0 + ρ′).
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Furthermore, the maps z 7→ ξ(z) and{
BC(s0, ρ) ×

[
vs0 + B[0,T ]

η,η (PnX
σ)
]

−→ C0([0, T ],PnX
σ
C)

(z, ṽ) 7−→ ṽ + R(ṽ, hz1, h
z
2)

are both holomorphic in their respective spaces, and so is its composition z 7→ ξ(z)+R(ξ(z), hz1, h
z
2).

We further notice that for s ∈ (s0 − ρ′, s0 + ρ′), ξ(s) = vs and therefore

ξ(s) + R(ξ(s), hs1, h
s
2) = vs + R(vs, hs1, h

s
2) = vs + ws = us,

where we used (2.44) and that (s0 − ρ′, s0 + ρ′) ⊂ (−ν, T ∗ − T − ν) for ρ′ > 0 small enough. In
particular, the map s ∈ (s0 − ρ′, s0 + ρ′) 7→ us ∈ C0([0, T ], Xσ) is the restriction to a real interval
of a holomorphic map, hence it is real analytic.

Since for any t0 ∈ [0, T ] the trace application ζ ∈ C0([0, T ], Xσ) 7→ ζ(t0) ∈ Xσ is linear continu-
ous, we obtain by composition that the application{

(s0 − ρ′, s0 + ρ′) −→ Xσ

s 7−→ us(t0) = u(t0 + s+ ν)

is real analytic. Observe that ρ′ depends on all the other parameters, while ν is an arbitrary number
satisfying 0 < ν < T ∗ − T , s0 is any number satisfying −ν < s0 < T ∗ − T − ν and t0 is arbitrary
in [0, T ]. This means that t 7→ u(t) (which is well-defined for t ∈ [0, T ∗]) is real analytic in a
neighborhood of any t1 of the form t1 = t0 + ν + s0, with t0, ν and s0 as before. Looking carefully
at the constraints, we see that this implies that t 7→ u(t) is real analytic from (0, T ∗) into Xσ, as
expected. □

3. Applications to the nonlinear Schrödinger equation

In this section we focus on the nonlinear Schrödinger equation, aiming to prove the main results
about propagation of analyticity and unique continuation announced in Section 1.1.

3.1. Preliminaries. Let L2(M) := L2(M;C) be equipped with the usual Hermitian inner prod-
uct. By the spectral theorem, −∆g has a compact resolvent and thus, we can construct a complete
orthonormal basis (ej)j∈N of eigenfunctions of −∆g, associated to the eigenvalues (λj)j∈N. In par-
ticular, we have ej ∈ C∞(M), −∆ej = λjej with λj ≥ 0 and ⟨ej , ek⟩L2(M) = δjk. We introduce the

high-frequency projector Qn on the space span(ej)j≥n and then we set the low-frequency projector
Pn = I −Qn.

For s ∈ R, we introduce the operator Λs : (1 − ∆)s/2 : C∞(M) → C∞(M) defined spectrally by

Λsψ =
∑
j∈N

(1 + λj)
s/2⟨ψ, ej⟩L2(M)ej .

By duality, we can extend it as an operator Λs : D′(M) → D′(M). We define the Sobolev spaces

Hs(M) = {ψ ∈ D′(M) | Λsψ ∈ L2(M)},
equipped with

⟨ψ, ϕ⟩Hs(M) = ⟨Λsψ,Λsϕ⟩L2(M) and ∥ψ∥2Hs(M) = ∥Λsψ∥2L2(M).

We can similarly define the real Sobolev space Hs(M;R) just by considering all the underlying
spaces above to be R instead of C.

On any Hr(M) with r ∈ R, the operator Λs is an unbounded selfadjoint operator with domain
Hr+s(M) and, is an isomorphism from Hr+s(M) onto Hr(M). According to [Shu01, Section 11],
we have

Λs ∈ Ψs
phg(M) with σΛs(x, ξ) := |ξ|sx, (x, ξ) ∈ T ∗

0M.
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We refer to Section B for some basics about pseudodifferential operators and notation that will be
used throughout this section.

Set X = L2(M) and introduce the operator

A = i∆g with D(A) = H2(M).

With the standard scalar product on X we have

A∗ = −A and A∗A = −A2 = ∆2
g.

For σ ≥ 0 one has

Xσ = D((A∗A)σ/2) = D((−∆g)σ) = H2σ(M,C).

To fit in the abstract framework given in Section 2, we shall view C as R×R. Indeed, to complexify
the complex Hilbert space Hs(M;C), we note that

Hs(M;C) ≃ Hs(M;R) ⊕ iHs(M;R)

and thus Hs(M;C) can be identified with the real Hilbert space Hs(M;R2). As a consequence, we
can consider the canonical complexification of Hs(M;R2), which is nothing but Hs(M;C2). This
identification will be used freely and whenever the context is clear and there is no risk of confusion,
we will just write Hs(M) for the corresponding real or complex Sobolev space. Observe then that
A satisfies Assumption 1 on the real Hilbert space Hs(M,R2), and it will be used throughout the
whole section, with no mention unless necessary.

Remark 3.1. If ψ = ψ1 + iψ2 ∈ D(A) then i∆gψ = −∆gψ2 + i∆gψ1. Therefore, under the above

identification, A acts on the space Hs(M;R2) as
(

0 −∆g

∆g 0

)
.

Let χ ∈ C∞(M;R) and let us now introduce f(u) := −iχf(u) where f : C → C will be either
real C∞ or real analytic. We then consider the Cauchy problem{

∂tu = Au+ f(u),
u(0) = u0.

(3.1)

Observe that if χ = 1, the latter corresponds to the abstract formulation of (1.1). Further, under
the identification C ≃ R2 we canonically identify f with a function from R2 into R2 and (3.1) is
actually a system of two equations.

Since A is skew-adjoint, by Stone’s theorem it generates a unitary group t 7→ etA on X and D(A).
In particular,

∀t ∈ [0, T ], ∥etA∥L(X) = 1 and ∥etA∥L(D(A)) = 1. (3.2)

By linear interpolation, the same holds on Xσ for any σ ≥ 0.
We now verify that the nonlinearity f verifies Assumption 2. First of all, we recall a version of a

result that can be found in Alinhac-Gérard [AG91, Proposition 2.2], in relation to the regularity of
a composition.

Lemma 3.2. Let N , L ∈ N and let g : RN → RL be a C∞(RN ,RL) function, with g(0) = 0. If
u ∈ L∞(M,RN )∩Hs(M,RN ), with s > 0, then g(u) ∈ L∞(M,RL)∩Hs(M,RL) and ∥g(u)∥Hs ≤
C∥u∥Hs, where C only depends on g and ∥u∥L∞.

Remark 3.3. The previous Lemma is actually written in [AG91] for function in Hs(Rd) and f ∈ C∞

of real variable. On the one hand, such a result extends verbatim to the multivariable case, using
for instance Faà di Bruno’s formula to obtain the required estimates to verify the Meyer’s multiplier
condition. On the other hand, the same result still holds for functions in Hs(M) when M is a
compact manifold with or without boundary using the definition of the norm of Hs(M) by partition
of unity and sum of the norm in Hs(Rd) of the functions in local coordinates and with extension.
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Proposition 3.4. Let d ∈ N, s > d/2 and χ ∈ C∞(M). Then if f is real C∞(C,C) then f = −iχf
satisfies Assumption 2a with σ = s/2 and for every R0. Additionally, if f is real analytic, then for
every R0 > 0 there exists δ0 > 0 such that f satisfies Assumption 2 with R0 and δ0.

Proof. We begin by identifying Hs(M,C) with Hs(M,R2) = Hs(M)×Hs(M). Observe that with
our choice of s we have that Hs is an algebra and Hs(M,R2) ↪→ L∞(M,R2) with embedding
constant κ. By working on each component of f , we reduce the analysis to the case where f : R2 →
R, which we assume from now on. As the multiplication by a smooth function is a bounded linear
operator from Hs into itself, without any loss of generality, we assume χ ≡ −1 and consider f = f .

Given that f is real C∞, by Theorem 3.2 we have that both f(v) and Df(v) −Df(0) are well-
defined in Hs(M,R2), for any v ∈ Hs(M,R2) along with the bound ∥Df(v)−Df(0)∥Hs ≤ C∥v∥Hs

with C depending only on Df and ∥v∥L∞ . Therefore, using that Hs is an algebra, we get, for any
v, v′ ∈ Hs,

∥f(v) − f(v′)∥Hs =

∥∥∥∥∫ 1

0
Df(v′ + τ(v − v′))(v − v′)dτ

∥∥∥∥
Hs

≤ C

(
1 +

∥∥∥∥∫ 1

0

(
Df(v′ + τ(v − v′)) −Df(0)

)
dτ

∥∥∥∥
Hs

)
∥v − v′∥Hs

≤ C
(
1 + ∥v∥Hs + ∥v′∥Hs

)
∥v − v′∥Hs , (3.3)

where C is a constant depending only on Df and the L∞-norm of both v and v′. We apply a similar
reasoning to the second derivative of f , which lead us to

∥Df(v) −Df(v′)∥L(Hs) ≤ C
(
1 + ∥v∥Hs + ∥v′∥Hs

)
∥v − v′∥Hs . (3.4)

Once we assume that v, v′ ∈ BR0(Hs(M,R2)) we observe that each component of v and v′ always
stays smaller than 4κR0 in L∞(M,R), thus f is well-defined as a map on BR0(Hs(M,R2)). Further,
estimate (3.3) and (3.4) directly implies that f satisfies Assumption 2a with σ = s/2.

Now, we will show that f satisfies Assumption 2 if it is assumed to be real analytic. By compact-
ness, there exists δ > 0 small such that f extends holomorphically into the interior of the complex
region

SR0,δ := {(z1 + iz2, w1 + iw2) ∈ C2 | |z1|, |w1| ≤ 4κR0 and |z2|, |w2| ≤ 2κδ}.

Moreover, this extension is continuous up to the boundary and there exists a constant M > 0 so
that |f(z, w)| ≤ M for all (z, w) ∈ SR0,δ. We still denote by f such an extension. By identifying
C2 ≃ R4, Lemma 3.2 allows us to consider the composition of smooth functions defined on domains
of C2 by functions in Hs, assuming that the composition makes sense. Since κ is the constant of
the embedding Hs ↪→ L∞, we see that f(v) is well defined in B4R0,2δ(H

s(M;C2)). In particular, it
satisfies the same estimates as (3.3) and (3.4).

To prove that f is holomorphic, by Theorem A13, we are led to prove that f is continuous
and holomorphic on each variable while the remaining one is being held fixed. The continuity is
direct as we already showed that f is Lipschitz-continuous in bounded sets of Hs(M;C2). We first

perform a Taylor development of order 2, say f(z + r1, w) = f(z, w) + ∂1f(z, w)r1 + r21
∫ 1
0 ∂

2
1f(z +

τr1, w)(1 − τ)dτ for (z, w) ∈ Int(SR0,δ) and r1 ∈ C small. Since f , ∂1f and ∂21f are smooth
functions, by Theorem 3.2, they are well-defined as maps on Hs(M;C2) and moreover, for any
(v1, v2) ∈ Int(B4R0,2δ(H

s(M;C2)) and h ∈ Bη,η(Hs(M,C)) with η > 0 small enough, depending on
(v1, v2) and f , we can write

f(v1 + h, v2) = f(v1, v2) + ∂1f(v1, v2)h+ h2
∫ 1

0
∂21f(v1 + τh, v2)(1 − t)dt, (3.5)
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with equality meant as functions in Hs(M,C) (as v2 is being held fixed). Therefore f is holomorphic
in the sense of Theorem A3 with (partial) derivative h 7→ ∂1f(v1, v2)h, which is continuous and C-
linear as a map from Hs(M,C) into itself. The same argument works when v1 is being held fixed.
This finishes the proof. □

3.1.1. Well-posedness. Here we briefly recall some results related to the well-posedness of (1.1) in
the subcritical case. It is worth mention that in the case where s > d/2, the well-posedness can be
classically achieved by Picard iteration in C0([0, T ], Hs(M)).

In dimension d = 2, a crucial tool to handle the subcritical case is the use of Strichartz estimates,
which were obtained by Burq, Gérard, and Tzvetkov [BGT04] by means of semiclassical analysis.

Theorem 3.5. [BGT04, Theorem 1] Let (M, g) be a compact Riemannian manifold of dimension
d ≥ 2. Let (p, q) ∈ [2,∞) × [2,∞) satisfying the admissibility condition

2

p
+
d

q
=
d

2
, (p, q) ̸= (2,∞).

For any finite time interval I, there exists C = C(I) > 0 such that for every v0 ∈ L2(M) solution
of i∂tv + ∆gv = 0 with v(0, ·) = v0, it holds

∥v∥Lp(I,Lq(M)) ≤ C(I)∥v0∥H1/p(M).

To treat the nonlinearity and ensure the availability of the Strichartz estimates, the solution is
sought in the following Banach space

YT = C0([0, T ], H1(M)) ∩ Lp([0, T ],W 1−1/p,q(M)),

equipped with its natural norm, where p > max(ϱ − 1, 2), 1/p + 1/q = 1/2 with p < ∞, with the
notation ϱ = 2deg(P ) − 1 ≥ 3. We then have the following well-posedness result for the defocusing
NLS in dimension d = 2.

Theorem 3.6. [BGT04, Theorem 2] Let (M, g) be a compact Riemannian surface and let P be a
polynomial with real coefficients such that P ′(r) → +∞ as r → +∞. For every u0 ∈ H1(M), there
exists a unique maximal solution u ∈ C(R,H1(M)) of equation

i∂tu+ ∆gu = P ′(|u|2)u, u(0) = u0,

where, for any finite p, u ∈ Lp
loc(R, L

∞(M)). Moreover, for any T > 0, the flow map u0 7→ u is
Lipschitz continuous from bounded sets of H1(M) into YT .

In dimension d = 3 the analysis requires the use of multilinear estimates and Bourgain spaces,
which we briefly recall. The Bourgain space Xs,b is equipped with the norm whose square is given
by

∥u∥2Xs,b =
∑
k∈N

⟨λk⟩s
∥∥∥⟨τ + λk⟩b P̂k(τ)u

∥∥∥2
L2(Rτ×M)

= ∥u#∥2Hb(R,Hs(M))

where u = u(t, x) with (t, x) ∈ R×M, u#(t) = e−it∆u(t) and P̂ku(τ) denotes the Fourier transform
of Pku with respect to the time variable, the latter being the projector onto ek. The associated

restriction space Xs,b
T is the corresponding restriction space with the norm

∥u∥
Xs,b

T
= inf

{
∥ũ∥Xs,b | ũ = u on (0, T ) ×M

}
.

The following technical assumption ensures that the Cauchy problem is wellposed in H1(M). It
yields a bilinear loss of s0 < 1.
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Assumption WP. There exists C > 0 and 0 ≤ s0 < 1 such that for any f1, f2 ∈ L2(M) satisfying

fj = 1√1−∆∈[Nj ,2Nj [
(fj), j = 1, 2, 3, 4

one has the following bilinear estimates: if uj(t) = eit∆fj , j = 1, 2 then

∥u1u2∥L2([0,T ]×M) ≤ C min(N,L)s0∥f1∥L2(M)∥f2∥L2(M). (3.6)

The above assumption is satisfied in the following cases (here s0+ means any s > s0):

• T3 with s0 = 1/2+, see [Bou93].
• The irrational torus R3/(θ1Z×θ2Z×θ3Z) with θi ∈ R, for which an estimate with s0 = 2/3+

has been obtained in [Bou07].
• S3 with s0 = 1/2+, see [BGT05].
• S2 × S1 with s0 = 3/4+, see [BGT05].

The well-posedness in each one of the aforementioned cases was studied in the corresponding
cited article. We summarize them in the following result, which states the existence for a defocusing
nonlinearity of degree 3 of the form f(u) = αu+ β|u|2u with α > 0, β ≥ 0.

Proposition 3.7. [Lau10b, Proposition 2.1] Let T > 0 and s ≥ 1. Assume that M satisfies
Assumption WP. Then, for every g ∈ L2([0, T ], Hs(M)) and u0 ∈ Hs(M), there exists a unique

solution u on [0, T ] in Xs,b
T to the Cauchy problem{
i∂tu+ ∆u− αu− β|u|2u = g on [0, T ] ×M,

u(0) = u0 ∈ Hs.
(3.7)

Moreover the flow map {
F : Hs(M) × L2([0, T ], Hs(M)) −→ Xs,b

T
(u0, g) 7−→ u

is Lipschitz on every bounded subset.

3.1.2. Observability inequality. Let us first introduce some notation. Given ω which satisfies the
GCC, by a compactness argument [LL24, Lemma A.3] we can always find ω0 ⋐ ω which satisfies
the GCC as well and a smooth function bω supported in ω with bω = 1 on ω0. To this function, we
will associate the multiplication operator C defined as

C : z ∈ Hs(M) 7−→ bωz ∈ Hs(M), (3.8)

which is linear and continuous for any s ∈ R. We will use this operator from now onward.
The observability inequality for the linear Schrödinger equation under the GCC is due to Lebeau

[Leb92]. Although it was obtained in the more complicated case of boundary observability, the same
result holds for internal observation.

Theorem 3.8. [Leb92] Let s ∈ [0, 2]. Let ω satisfy the GCC and let C be as in (3.8). Then, for
every T > 0, there exists C = C(ω, T, s) > 0 such that for any v0 ∈ Hs(M) it holds

∥v0∥2Hs(M) ≤ C

∫ T

0
∥Ceit∆gv0∥2Hs(M)dt.

Proof. The result for s = 0 follows from Lebeau [Leb92]. For s = 2, we solve the linear Schrödinger
equation with initial data z0 = (1 − ∆g)v0 and by noticing that ei·∆g and (1 − ∆g) commute, by
applying the known observability in L2(M) and the definition of Sobolev norm we get

∥v0∥2H2(M) ≤ C

∫ T

0
∥Ceit∆gv0∥2H2(M)dt+ C

∫ T

0
∥[C, (1 − ∆g)]eit∆gv0∥2L2(M)dt.
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Since the commutator [C, (1 − ∆g)] is a pseudodifferential operator of order −1, the second term
in the right-hand side is of lower order and hence it can be removed by a classical compactness-
uniqueness argument (see [LL24, Section 4], for instance), proving the case s = 2. The intermediate
case s ∈ (0, 2) follows by linear interpolation. □

3.2. Propagation of regularity. In this section we recall some propagation of regularity results for
the NLS which are key to verify the compactness-related hypotheses of Theorem 1.8. The following
propagation result has been essentially proved by Dehman-Gérard-Lebeau [DGL06]. Although it is
stated in dimension d = 2 and including the more involved subcritical regularity, it is clear from
their proof that it can be adapted to higher dimensions. Below we state the result for any dimension
in an algebra and we give the proof for the convenience of the reader.

Proposition 3.9. Let T > 0, d ∈ N and s > d/2. Let u ∈ C0([0, T ], Hs(M)) be a solution of the
NLS

i∂tu+ ∆gu = f(u). (3.9)

Assume that ω satisfies the GCC and let C be defined as in (3.8). If Cu ∈ L2([0, T ], Hs+ν(M)) for
some ν > 0, then u ∈ C0([0, T ], Hs+ν(M)) and there exists a constant C > 0, which depends in all
the given parameters and ∥u∥L∞([0,T ]×M), such that

∥u∥C0([0,T ],Hs+ν(M)) ≤ C
(
∥Cu∥L2([0,T ],Hs+ν(M)) + ∥u∥C0([0,T ],Hs(M))

)
. (3.10)

Regarding propagation results in the subcritical case, in dimension d = 2 we have the following
result.

Proposition 3.10. [DGL06, Theorem 3] Let d = 2 and let ω satisfy the GCC. Let u ∈ C0([0, T ], H1(M))
be a solution of (1.1) with finite Strichartz norms such that ∂tu = 0 on (0, T ) × ω. Then u ∈
C∞(

(0, T ) ×M
)
.

Remark 3.11. Although it is not written this way, it follows directly from their theorem as ∂tu = 0
on (0, T ) × ω implies that u satisfies the elliptic equation ∆gu = P ′(|u|2)u on (0, T ) × ω and thus
the hypotheses are satisfied by elliptic regularity.

In dimension 3, the propagation results have been adapted in the low-regularity framework by
means of Bourgain spaces.

Proposition 3.12. [Lau10b, Corollary 5.3] Let d = 3 and suppose that M satisfies Assumption WP.

Let 1/2 < b ≤ 1. Let ω satisfy the GCC and let u ∈ X1,b
T be a solution of (1.1) such that ∂tu = 0

on (0, T ) × ω. Then u ∈ C∞(
(0, T ) ×M

)
.

3.2.1. Linear propagation results. The main tool in the proof of Theorem 3.9 is the linear propaga-
tion result [DGL06, Proposition 13]. It states that, for solutions to the linear Schrödinger equation,
we can microlocally propagate higher regularity along the bicharacteristic flow associated to the
symbol p(x, ξ) = |ξ|2x, see Section B. We point out that, as we work on the full time interval [0, T ],
we replace the L2

loc hypothesis by an L2 assumption with respect to the aforementioned result.

Proposition 3.13. Consider T > 0 and let u ∈ C0([0, T ], Hs(M)), with s ∈ R, be a solution of

i∂tu+ ∆gu = h ∈ L2([0, T ], Hs(M)).

Given ρ0 = (x0, ξ0) ∈ T ∗
0M, we assume that there exists a 0-order pseudodifferential operator

ψ(x,Dx), elliptic in ρ0, such that ψ(x,Dx)u ∈ L2([0, T ], Hs+ν(M)) for some ν ≤ 1/2. Then for
every ρ1 ∈ Φρ0(t), the bicharacteristic ray starting at ρ0, there exists a 0-order pseudodifferential
operator η(x,Dx), elliptic in ρ1, such that η(x,Dx)u ∈ L2([0, T ], Hs+ν(M)). Moreover, there exists
C > 0 such that
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∥η(x,Dx)u∥2L2([0,T ],Hs+ν(M)) ≤ C
(
∥ψ(x,Dx)u∥2L2([0,T ],Hs+ν(M))

+ ∥u∥2C0([0,T ],Hs(M)) + ∥h∥2L2([0,T ],Hs(M))

)
. (3.11)

Proof. First of all, we regularize u by introducing Jn :=
(
1 − 1

n2 ∆g)−1 which belongs to Ψ−2(M)

for each n ∈ N, and then we set un := Jnu and hn := Jnh. Note that un ∈ C0([0, T ], Hs+2(M))
and un → u in L∞([0, T ], Hs(M)). We divide the proof in three steps.

Step 1. Commutator estimate. We will carefully choose a time-independent pseudodifferential op-
erator A = A(x,Dx) of order (2r − 1) where r = s+ ν.

Let us denote L = i∂t + ∆. By integration by parts, we have the following commutator identity

⟨Lun, A∗un⟩L2([0,T ]×M) − ⟨Aun, Lun⟩L2([0,T ]×M)

= ⟨[A,∆]un, un⟩L2([0,T ]×M) + i⟨Aun, un⟩L2(M)

∣∣T
0
. (3.12)

By construction, A is of order 2r− 1 = 2s+ 2ν− 1 ≤ 2s, and so [A,∆] is of order 2r ≤ 2s+ 1. First
of all, we observe that the right-hand side of (3.12) is uniformly bounded with respect to n ∈ N.
Indeed, as (un) and (hn) are both uniformly bounded in C([0, T ], Hs(M) and L2([0, T ], Hs(M)),
respectively, we get

|⟨Aun, Lun⟩L2([0,T ]×M)| = |⟨Λ−r+1/2Aun,Λr−1/2hn⟩L2 | ≲ ∥un∥L∞(Hs)∥hn∥L2(Hs).

We used that Λ−r+1/2A is of order 2r− 1− r+ 1/2 = r− 1/2 ≤ s and so, in particular, it maps Hs

into L2. The term ⟨Lun, A∗un⟩ can be bounded in the same way as before. To estimate the terms
at t = T and t = 0 on the left-hand side of (3.12), we note that

|⟨Aun(T ), un(T )⟩L2(M)| = |⟨Λ−sAun(T ),Λsun(T )⟩L2(M)| ≲ ∥un(T )∥2Hs

≲ ∥un∥2L∞(Hs)

and the term ⟨Aun(0), un(0)⟩L2(M) is bounded similarly. Gathering the above estimates, we get the
following estimate independent of n ∈ N,∣∣∣∣∫ T

0
⟨[A,∆]un, un⟩L2(M)dt

∣∣∣∣ ≲ ∥un∥2L∞(Hs) + ∥hn∥2L2(Hs). (3.13)

Step 2. Microlocal propagation. Take ρ1 = Φt(ρ0). We want to transport a symbol supported near
ρ1 along the flow generated by p(x, ξ) = |ξ|2x, up to a remainder localized near ρ0, which carries
information from ρ0. Let V1 be a conical neighborhood of ρ1. Using that the bicharacteristic flow is
time-reversible, by Theorem B7 backwards, there exists a conical neighborhood V0 of ρ0, such that
for any symbol c = c(x, ξ) of order r supported in V1, which we further choose to be elliptic at ρ1,
we can find another symbol a = a(x, ξ) of order 2r − 1 such that

1
iHpa(x, ξ) = |c(x, ξ)|2 + r(x, ξ),

where r = r(x, ξ) is a symbol of order 2r supported in V0. Now, we choose A(x,Dx) to be a pseu-
dodifferential operator of principal symbol a. If C and R denote some pseudodifferential operators
whose principal symbols are c and r, respectively, for some K ∈ Ψ2s−1(M) it holds

[A,∆] = C∗C +R+K. (3.14)
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Step 3. Estimates. By local parametrix Theorem B5, there exist a pseudodifferential operator
ψ† of order 0 elliptic at ρ0 and a cutoff χ equal to 1 in a conic neighborhood of ρ0 such that
ψ†(x,Dx)ψ(x,Dx) = Op(χ)+K1 with K1 smoothing. As r is supported in V0, by symbolic calculus
Theorem B2, we can write

⟨Run, un⟩L2 = ⟨R̃Λs+νψ(x,Dx)un,Λs+νψ(x,Dx)un⟩L2 + ⟨K2un, un⟩L2

where R̃ := Λ−(s+ν)(ψ
†)∗Rψ†Λ−(s+ν) ∈ Ψ0(M) and K2 is smoothing. We thus obtain

|⟨R(x,Dx)un, un⟩L2(M)| ≲ ∥ψ(x,Dx)un∥2Hs+ν(M) + ∥un∥2Hs(M). (3.15)

Using identity (3.14) followed by estimates (3.13) and (3.15), we have∫ T

0
∥C(x,Dx)un∥2L2(M)dt

≲ ∥ψ(x,Dx)un∥2L2([0,T ],Hs+ν(M)) + ∥un∥2L∞([0,T ],Hs(M)) + ∥hn∥2L2([0,T ],Hs(M)),

uniformly in n ∈ N. Since un(t) → u(t) in Hs(M) for each t ∈ [0, T ] and the convergence takes
place in a Hilbert space, we get that C(x,Dx)u ∈ L2([0, T ], L2(M)) and∫ T

0
∥C(x,Dx)u∥2L2(M)dt ≤ lim inf

n→∞

∫ T

0
∥C(x,Dx)un∥2L2(M)dt.

The proof concludes by taking η(x,Dx) := Λ−(s+ν)C(x,Dx). □

By a partition of unity argument, we can use the previous result to propagate any gain on
regularity to the whole manifold from any region that satisfies the GCC.

Corollary 3.14. With the notations and assumptions of Theorem 3.13, let ω satisfy the GCC and
let C be defined as in (3.8). If u ∈ L2([0, T ], Hs+ν(ω)), then u ∈ L2([0, T ], Hs+ν(M)) and there
exists a constant C > 0 such that

∥u∥2L2([0,T ],Hs+ν(M)) ≤ C
(
∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2C0([0,T ],Hs(M)) + ∥h∥2L2([0,T ],Hs(M))

)
. (3.16)

Proof. For every ρ ∈ S∗M, the Assumption GCC gives τ ∈ [0, T0) such that ρ0 = Φ−τ (ρ) ∈ S∗ω0.
Since C = bω is elliptic at ρ0 and Cu ∈ L2([0, T ], Hs+ν(M)) by hypothesis, Theorem 3.13 yields a
0-order pseudodifferential operator ηρ elliptic at ρ such that

∥ηρ(x,Dx)u∥2L2([0,T ],Hs+ν(M))

≤ Cρ

(
∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2C0([0,T ],Hs(M)) + ∥h∥2L2([0,T ],Hs(M))

)
. (3.17)

By compactness, we can choose finitely many ρ1, . . . , ρN such that S∗M can be covered by neigh-
borhoods V S

1 , . . . , V
S
N , where ηj(x,Dx) := ηρj (x,Dx) is elliptic on V S

j . For each j = 1, . . . , N , let us

define Vj to be a conic lift of V S
j to T ∗M, that is,

Vj := {(x, ξ) ∈ T ∗
0M | (x, ξ/|ξ|) ∈ V S

j , |ξ| ≥ 2}.

Let (χj)
N
j=1 ⊂ C∞(S∗M) be a microlocal partition of unity with

∑N
j=1 χ

2
j = 1 and suppχj ⊂ V S

j .

By taking ϱ ∈ C∞([0,+∞) with ϱ(τ) = 0 for τ ≤ 1 and ϱ(τ) = 1 for τ ≥ 2, we can extend χj to

act on T ∗
0M by setting χ̃j(x, ξ) = ϱ(|ξ|)χj

(
x, ξ

|ξ|

)
. It is indeed a symbol χ̃j ∈ S0

phg(T ∗M) with

supp χ̃j ⊂ Vj and

N∑
j=1

(
χ̃j(x, ξ)

)2
= 1 for |ξ| ≥ 2,
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and it vanishes for |ξ| ≤ 1. Let Θj ∈ Ψ0(M) be a quantization of χ̃jcj , where cj is the principal
symbol of ηj(x,Dx). Let us define

Υ := Θ∗
1Θ1 + . . .+ Θ∗

NΘN ∈ Ψ0(M),

which is elliptic and positive. Indeed, given that each ηj(x,Dx) is elliptic, the principal symbol of
Υ satisfies

νΥ =
N∑
j=1

χ̃2
j |cj |2 ≥ κ

N∑
j=1

χ̃2
j = κ > 0 for |ξ| ≥ 2,

where κ := minj=1,...,N minV S
j
|cj |2. Applying the sharp G̊arding’s inequality Theorem B6 to A :=

Λs+νΥΛs+ν ∈ Ψ2(s+ν)(M) and using symbolic calculus, we get

∥u∥2L2([0,T ],Hs+ν(M)) ≲
N∑
j=1

∥Θj(x,Dx)u∥2L2([0,T ],Hs+ν(M)) + ∥u∥2
L2([0,T ],Hs+ν− 1

2 (M))
. (3.18)

By writting, Θj = Op(χ̃j)ηj +Kj with Kj ∈ Ψ−1(M), we have

∥Θj(x,Dx)u∥2L2([0,T ],Hs+ν(M)) ≲ ∥ηj(x,Dx)u∥2L2([0,T ],Hs+ν(M)) + ∥u∥2L2([0,T ],Hs+ν−1(M)).

Since ν ≤ 1/2 it holds s+ ν − 1
2 ≤ s, therefore, using (3.17) for each ηj and summing over j, we get

N∑
j=1

∥Θj(x,Dx)u∥2L2([0,T ],Hs+ν(M))

≲ ∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2C0([0,T ],Hs(M)) + ∥h∥2L2([0,T ],Hs(M)). (3.19)

By plugging (3.19) into (3.18), we get the desired estimate (3.16). □

3.2.2. Nonlinear propagation. We are now in position to prove the nonlinear propagation result.

Proof of Theorem 3.9. First, assume that 0 < ν ≤ 1/2. With the aid of Duhamel’s formula, let us
split the solution u into its linear and nonlinear part as

u(t) = eit∆gu0 − i

∫ t

0
ei(t−s)∆gf(u(s))ds = ulin(t) + uNlin(t).

For each n ∈ N, let us consider Jn :=
(
1− 1

n2 ∆g)−1 ∈ Ψ−2(M) and let us introduce the regularization
un := Jnu. Let us also denote by unlin and unNlin the corresponding regularized linear and nonlinear
part of un.

As we will employ the observability later on, let us note that Cun = CJnu = JnCu+ [Jn,C]u.
Moreover, we have [Jn,C] = 1

n2Jn[∆g,C]Jn. Some computations lead us to ∥Jn∥L(Hs+ν(M)) ≤ 1

and ∥ 1
n2Jn∥L(Hs(M),Hs+2(M)) ≤ 1. Further, since [∆g,C] ∈ Ψ1(M) and Hs+1(M) ↪→ Hs+ν(M),

we get that [∆g,C] ∈ L(Hs+2(M), Hs+ν(M)). Therefore, as u ∈ L2([0, T ], Hs+ν(M)) due to the
corresponding smoothing effect, we get uniformly in n

∥Cun∥L2([0,T ],Hs+ν) ≲ ∥Cu∥L2([0,T ],Hs+ν(M)) + ∥Jn[∆g,C]
Jn

n2
u∥L∞([0,T ],Hs+ν(M))

≲ ∥Cu∥L2([0,T ],Hs+ν(M)) + ∥u∥L∞([0,T ],Hs(M)).

Since u ∈ C0([0, T ], Hs(M)) and we are in an algebra, using Theorem 3.2 (recall that f(0) = 0) we
have ∥f(u)∥L2(Hs) ≤ C∥u∥L2(Hs) with C depending only on ∥u∥L∞([0,T ]×M), which is finite due to
Sobolev embedding. By Theorem 3.14, we get

∥u∥2L2([0,T ],Hs+ν(M)) ≲ ∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2L∞([0,T ],Hs(M)) + ∥f(u)∥2L2([0,T ],Hs(M))
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≲ ∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2L∞([0,T ],Hs(M))

Let us first prove that unNlin is uniformly bounded in L∞(Hs+ν). As before, since u(t) ∈
Hs+ν(M) a.e. t ∈ [0, T ] and we are in an algebra, using Theorem 3.2 we have ∥f(u(t))∥Hs+ν(M) ≤
C∥u(t)∥Hs+ν(M) a.e. t ∈ [0, T ], with C only depending on ∥u∥L∞([0,T ]×M). Since L2 ↪→ L1 in finite
measure spaces, we obtain

∥unNlin∥L∞([0,T ],Hs+ν(M)) ≤ ∥uNlin∥L∞([0,T ],Hs+ν(M))

≲
∫ T

0
∥f(u(t))∥Hs+ν(M)dt ≲

∫ T

0
∥u(t)∥Hs+ν(M)dt ≲ ∥u∥L2([0,T ],Hs+ν(M)).

We are now in position to treat the linear part by employing the observability inequality. More
precisely, we use the observability inequality for the linear Schrödinger equation Theorem 3.8, for
any t ∈ [0, T ] we have

∥unlin(t)∥2Hs+ν(M) = ∥un0∥2Hs+ν

≤ C2
obs

∫ T

0
∥Cunlin(t)∥2Hs+νdt

≤ 2C2
obs

∫ T

0
∥Cun(t)∥2Hs+νdt+ 2C2

obs

∫ T

0
∥CunNlin(t)∥2Hs+νdt

≤ C
(
∥Cu∥2L2([0,T ],Hs+ν(M)) + ∥u∥2L∞([0,T ],Hs(M))

)
,

where we used all the previous estimates to get the last inequality. As the previous estimate is valid
for each t ∈ [0, T ], it follows that un is uniformly bounded in L∞([0, T ], Hs+ν(M)). Moreover, due
to the fact that ∥u− un∥L∞([0,T ],Hs(M)) → 0 and leveraging that Hs(M) is a Hilbert space, we get

that u(t) ∈ Hs+ν(M) and

∥u(t)∥Hs+ν(M) ≤ lim inf∥un(t)∥Hs+ν(M),

for any t ∈ [0, T ], showing that u is uniformly bounded in C0([0, T ], Hs+ν(M)).
If ν > 1/2, then we pick 0 < ν ′ ≤ 1/2 so that kν ′ = ν for some k ∈ N and iterate the previous

argument k-times with ν ′ as a parameter to conclude that u ∈ C0([0, T ], Hs+ν(M)) along with
estimate (3.10). □

3.3. Uniform observability at high-frequency. Our aim in this section is to verify Assumption
3. More precisely, we will prove an observability inequality at high-frequency for the following linear
Schrödinger equation with potential{

i∂tw + ∆gw = QnDf̃(v)w in [0, T ] ×M,
w(0) = w0,

(3.20)

where f̃ := χf with χ ∈ C∞(M;R), and w0 ∈ QnH
s(M).

3.3.1. Propagation of compactness. Upon a straightforward modification of [DGL06, Proposition
15] regarding the Sobolev regularity, we have the following result about the propagation of the
microlocal defect measure which is valid in any dimension.

Proposition 3.15. Let s ≥ 1. Let L = i∂t + ∆g + R0 where R0(t, x,Dx) is a tangential pseudo-
differential operator of order 0 and (un)n a sequence of bounded functions ∥un∥L∞([0,T ],Hs(M)) ≤ C
satisfying

∥un∥L∞([0,T ],Hs−1(M)) −−−→
n→∞

0 and ∥Lun∥L2([0,T ],Hs−1(M)) −−−→
n→∞

0.
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Then, there exist a subsequence (uk)k of (un)n and a positive measure µ on (0, T )×S∗M such that,
for every tangential pseudo-differential operator A = A(t, x,Dx) of order 2s, with principal symbol
σ(A) = a2s(t, x, ξ),

⟨A(t, x,Dx)uk, uk⟩L2([0,T ]×M) −−−→
k→∞

∫
(0,T )×S∗M

a2s(t, x, ξ)dµ(t, x, ξ).

Moreover, if Φt denotes the bicharacteristic flow on S∗M, one has, for every t ∈ R,
Φt(µ) = µ,

namely, µ is invariant by the bicharacteristic flow ’at fixed t’.

3.3.2. Uniform observability. Using the microlocal defect measure we now prove an observability
inequality uniform with respect to the potential for solutions at high-frequency, that is, we verify
that Assumption 3 holds true. First, we verify the observability with potentials.

Proposition 3.16. Let T > 0, M > 0, d ∈ N and s > d/2 be fixed. Let ω be an open set satisfying
the GCC and let C be as in (3.8). Then there exist n0 ∈ N and C > 0 such that for any V1,

V2 ∈ B[0,T ]
M (Hs(M)) and n ≥ n0, the following observability inequality holds

∥w0∥2Hs ≤ C

∫ T

0
∥Cw(t)∥2Hsdt,

for any w0 ∈ QnH
s(M), where w ∈ C0([0, T ],QnH

s(M)) is solution of{
i∂tw + ∆gw = Qn(V1w + V2w) in (0, T ) ×M,

w(0) = w0.
(3.21)

Proof. Let us momentarily assume that d ≥ 2. We proceed by contradiction. Let us assume that

there exist nj → +∞, a sequence of potentials (V1,j), (V2,j) ⊂ B[0,T ]
M (Hs(M)) and a sequence of

solutions (wj)j of (3.21) in C([0, T ],QnjH
s(M)) associated to (V1,j)j and (V2,j)j with ∥w0,j∥Hs = 1

such that ∫ T

0
∥Cwj(t)∥2Hs(M)dt −−−→j→∞

0.

The uniform bounds on (w0,j), (V1,j) and (V2,j) yield that that (wj)j is an uniformly bounded
sequence in C([0, T ],Hs(M)). Then, since wj(t) ∈ QnjH

s(M) a.e. t ∈ [0, T ] we have

∥wj∥L∞([0,T ],Hs−1(M)) ≤ λ−1/2
nj

∥wj∥L∞([0,T ],Hs(M))

from which wj → 0 in L∞([0, T ], Hs−1(M)).
Using that Hs(M) is an algebra, we get

∥QnjV1,jwj∥L∞([0,T ],Hs(M)) ≤ ∥V1,jwj∥L∞([0,T ],Hs(M)) ≤M∥wj∥L∞([0,T ],Hs(M))

We conclude that (QnjV1,jwj)j is uniformly bounded. Hence, in a similar way as before,

∥QnjV1,jwj∥L2([0,T ],Hs−1(M)) ≤ λ−1/2
nj

∥QnjV1,jwj∥L2([0,T ],Hs(M))

and we get that QnjV1,jwj converges strongly to 0 in L2([0, T ], Hs−1(M)). Similarly, we obtain

that QnjV2,jwj converges strongly to 0 in L2([0, T ], Hs−1(M)) as well. We thus have i∂twj + ∆wj = hj −−−→
j→∞

0 in L2([0, T ], Hs−1(M)),

Cwj −−−→
j→∞

0 in L2([0, T ], Hs(M)),

with hj := Qnj (V1,jwj + V2,jwj). By Theorem 3.15 we can attach a microlocal defect measure µ to

(wj)j in L2([0, T ], Hs(M)). Further, since ω0 satisfies the GCC and Cwj → 0 in L2([0, T ], Hs(M)),
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we get that µ = 0 on S∗ω0 and then, by invariance under the bicharacteristic flow, µ ≡ 0 on S∗M.
Therefore wj converges to 0 in L2

loc([0, T ], Hs(M)).
Let us pick t0 ∈ [0, T ] such that w(t0) goes strongly to 0 in Hs(M). By uniqueness and lin-

ear estimates, we get that wj converges strongly to 0 in C0([0, T ], Hs(M)), which contradicts
∥wj(0)∥Hs(M) = 1.

Finally, the case d = 1 follows by applying the above reasoning to w̃ = Λs−1w. Since Λs−1 and
i∂t + ∆g commute, this allow us to apply Theorem 3.15 with r = 1 and the rest goes in a similar
way. □

As a corollary we verify that Assumption 3 holds true.

Corollary 3.17. Let T > 0, R > 0, d ∈ N and s > d/2. Let V = B[0,T ]
R (Hs(M)) and χ ∈

C∞(M,R). Assume that ω satisfies the GCC and let C be as defined in (3.8). Under these
notations, there exists n0 ∈ N such that Assumption 3 holds true with f = −iχf .

Proof. Since multiplying by a smooth function is a bounded linear operator from Hs(M) into itself,
let us assume for simplicity that χ ≡ 1. If z = x+ iy ∈ C, let us define

∂zf :=
1

2
(∂x − i∂y)f and ∂zf :=

1

2
(∂x + i∂y)f.

By a slight variation of Theorem 3.4, we get that for any v ∈ B[0,T ]
R (Hs(M)), both ∂zf(v) and ∂zf(v)

belong to B[0,T ]
M (Hs(M)) where M is a constant that depends on R, coming from the composition

estimates of ∂zf(v) and ∂zf(v). Given that we can write

Df(v)w = ∂zf(v)w + ∂zf(v)w,

the conclusion follows as a direct application of Theorem 3.16 by taking V1 = ∂zf(v) and V2 =
∂zf(v). □

Remark 3.18. For instance, if P ′(z) = z, which corresponds to a cubic nonlinearity f(z) = |z|2z =
z2z, then ∂zf(v) = 2v and ∂zf(v) = v2, from which follows that Df(v)w = 2|v|2w + v2w.

3.4. Finite determining modes. If we drop the analyticity on the nonlinearity, we can still show
that the property of finite determining modes holds for the observed nonlinear Schrödinger equation
(1.1) with regular enough nonlinearity.

Proposition 3.19. Let d ∈ N and s > d/2. With the notations of Section 3.1, assume ω satisfies
GCC and that f ∈ C∞(C,C). For any R0 > 0, there exists n ∈ N such that the following holds.
Let h ∈ L1([0, T ], Hs(M)) and g ∈ L2([0, T ], Hs(M)). Let u and ũ be two solutions on (0, T ) of{

i∂tu+ ∆gu = f(u) + h in [0, T ] ×M,
u = g in [0, T ] × ω,

such that ∥u(t)∥Hs ≤ R0 and ∥ũ(t)∥Hs ≤ R0 for all t ∈ [0, T ]. If Pnu(t) = Pnũ(t) for all times
t ∈ [0, T ], then u(t) ≡ ũ(t) for all t ∈ [0, T ].

Proof. We have already established in Section 3.1 that A satisfies Assumption 1. If we pick s∗ ∈
(d/2, s), then z ∈ B[0,T ]

R0
(Hs∗(M),A) where A is a bounded ball in Hs(M). Moreover, A is compact

in Hs by Sobolev embedding. From Theorem 3.4, Assumption 2a is satisfied with f := −if . Since
ω satisfies the GCC, Assumption 3 is satisfied after Theorem 3.17 with C defined as in (3.8) and

V = B[0,T ]
3R0

(Hs∗(M),A). Then, we apply the abstract Theorem 2.14 with σ∗ = s∗/2 instead of σ to

obtain Qn(ũ− u)(t) = 0 on Hs∗ for every t ∈ [0, T ]. Since Qn is a linear bounded operator in both
Hs∗ and Hs with Hs ↪→ Hs∗ , the equality holds in Hs as well. □
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3.5. Propagation of analyticity. Here we prove the main result for the NLS Theorem 1.1.

Proof of Theorem 1.1. Let ω1 ⋐ ω satisfying the GCC [LL24, Lemma A.14] and let χ ∈ C∞
c (M)

be a smooth compactly supported function whose support is contained in ω and χ = 1 on ω1.
As the Schrödinger equation is observable from ω1 for any T > 0 and being analytic is a local

property, it is enough to prove that the restriction of u, solution to (1.1), restricted to any compact
subinterval [δ, T − δ] with δ > 0 is analytic. By translation in time, we can consider it on [0, T −
2δ]×M and without loss of generality we can just relabel T − 2δ by T and assume that analyticity
holds in a neighborhood of (0, T ). Hence, by hypothesis, t ∈ (0, T ) 7→ χu(t) ∈ Hs(M) is analytic,
and so is t ∈ (0, T ) 7→ χ∂tu(t) ∈ Hs(M). Let us also assume that t ∈ [0, T ] 7→ u(t) ∈ Hs(M) is
bounded by some R0 > 0.

By using the equation, we observe that on (0, T ) × ω we have

∆g(χu) = χf(u) + [∆, χ]u− iχ∂tu. (3.22)

Since u ∈ C0([0, T ], Hs(M)), we readily get that [∆, χ]u(t) ∈ Hs−1(M) for each t ∈ (0, T ).
Moreover, since f is smooth, by Theorem 3.2 we have f(u(t)) ∈ Hs(M) ↪→ Hs−1(M) for each
t ∈ (0, T ). Thus, the right-hand side of (3.22) belongs pointwise in time to Hs−1. Furthermore,
since t ∈ (0, T ) 7→ χu(t) ∈ Hs(M) is analytic and bounded by R0, by Cauchy’s estimates Theo-
rem A11 applied to χ∂tu and global elliptic estimates applied to (3.22), we get that there exists a
constant C = C(R0) > 0 such that

∥χu∥L2([0,T ],H1+s(M)) ≤ C.

We can invoke Theorem 3.9 to obtain that u ∈ B[0,T ]
R1

(H1+s(M)) for some R1 > 0.

Let s∗ ∈ (d/2, s) and let us consider

A := {v ∈ Hs(M) | ∥v∥Hs(M) ≤ R0},

which is a compact subset ofHs∗(M) by Sobolev embedding. Observe that u(t) ∈ A for all t ∈ [0, T ].

Furthermore, by using the equation we see that ∂tu in particular belongs to B[0,T ]
R2

(Hs−1(M)) for
some R2 > 0. Let us then introduce

K := {w ∈ B[0,T ]
R0

(Hs(M)) | ∥∂tw∥L2(Hs−1) ≤ R2},

which is compact in C0([0, T ], Hs∗(M)) as a consequence of Aubin-Lions lemma (see Theorem A21).

Therefore, u belongs to the compact set B[0,T ]
R0

(Hs∗(M),A)∩K. Note that A and K are both stable
under the projector Pn, see Remark 2.19.

By compactness [LL24, Lemma A.14], once again, let ω1 ⋐ ω0 satisfying the GCC and let C
be defined as in (3.8) accordingly. Observe that z = (1 − χ)u = 0 on ω1, and thus Cz = 0 on

[0, T ] ×M. Then, by the previous discussion, z ∈ B[0,T ]
R0

(Hs∗(M),A) ∩ K and it solves{
∂tz = Az + f(z + h1) + h2 in [0, T ],

Cz(t) = 0 for t ∈ [0, T ],

with A = i∆g, C = bω0 , f = −i(1 − χ)f and{
h1 : t ∈ [0, T ] 7−→ χu(t) ∈ Hs∗(M),
h2 : t ∈ [0, T ] 7−→ [∆g, χ]u(t) ∈ Hs∗(M).

By the regularity properties obtained on u, we see that h1 ∈ B[0,T ]
R0

(Hs∗(M),A) ∩ K and h2 ∈
B[0,T ]
R3

(Hs∗(M),A), for some R3 > 0. By hypothesis, an application of Theorem A19 and compact-
ness, there exists µ > 0 so that both h1 and h2 admit holomorphic extensions{

h1 : t ∈ (0, T ) + i(−µ, µ) 7−→ χu(t) ∈ Hs∗(M;C2),
h2 : t ∈ (0, T ) + i(−µ, µ) 7−→ [∆g, χ]u(t) ∈ Hs∗(M;C2).
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Moreover, given that ℜh1 ∈ B[0,T ]
R0

(Hs∗(M)), by shrinking µ > 0 if necessary, by continuity and

compactness, we can assume that ℜh1(z) ∈ B2R0(Hs∗(M)) for every z ∈ [0, T ] + i[−µ, µ].

By Theorem 3.4, f satisfies Assumption 2. Then, by Theorem 3.17, for any 0 < T̃ < T there exists

n0 ∈ N such that Assumption 3 is satisfied with T̃ , 2R0, n0, B[0,T̃ ]
6R0

(Hs∗(M)) and f = −i(1−χ)f (with

χ of the corollary replaced by 1−χ). In particular, since a function with value in A+A is bounded

by 3R0 in the Hs∗(M)-norm, Assumption 3 also holds on the closed subset B[0,T̃ ]
6R0

(Hs∗(M),A+A) ⊂

B[0,T̃ ]
6R0

(Hs∗(M)).

We are then in position to apply Theorem 1.8 with σ, (T, T ∗) and (R0, R1) of the theorem replaced

by s∗/2, (T̃ , T ) and (2R0, R3), respectively. We deduce that t ∈ (0, T ) 7→ z(t) ∈ Hs∗(M) is real
analytic, and so is t ∈ (0, T ) 7→ u(t) ∈ Hs∗(M).

Since t ∈ (0, T ) 7→ u(t) ∈ Hs∗(M) is analytic, so are t ∈ (0, T ) 7→ ∂tu(t) ∈ Hs∗(M) (by
Theorem A14) and t ∈ (0, T ) 7→ u(t) − f(u(t)) ∈ Hs∗(M) (by Theorem A4). Using the equation,
we get that t ∈ (0, T ) 7→ u(t) ∈ H2+s∗(M) is analytic. □

3.6. Unique continuation. In this section we consider u solution of the system{
i∂tu+ ∆u = f(u) in (0, T ) ×M,

∂tu = 0 on (0, T ) × ω,
(3.23)

where, we recall from case (B), that the nonlinearity f(u) = P ′(|u|2)u satisfies:

(1) if d = 2 then P is a polynomial function with real coefficients, satisfying P (0) = 0 and the
defocusing assumption P ′(r) −−−−→

r→+∞
+∞;

(2) if d = 3, then P ′(r) = αr + β with α > 0, β ≥ 0, corresponding to the cubic nonlinearity.

The purpose of this section is to prove Theorem 1.2 and Theorem 1.3. We also prove the unique
continuation result in an unbounded domain Theorem 1.5 at the end of this section.

3.6.1. On unique continuation for linear Schrödinger equation. We now recall the following unique
continuation result in the context of Schrödinger equations due to Tataru-Robbiano-Zuily-Hörman-
der. We refer to [LL19, Theorem 6.5] for a quantitative statement that implies unique continuation.

Theorem 3.20. Let T > 0. Let M be a compact Riemannian manifold with (or without) boundary,
∆g the Laplace-Beltrami operator on M, and

P = i∂t + ∆g + V

with V ∈ L∞((0, T ),W 2,∞(M)). Assume that V depends analytically on the variable t ∈ (0, T ).
Let ω be a nonempty open subset of M. Let u0 ∈ H2(M) ∩H1

0 (M) and associated solution u of Pu = 0 in (0, T ) × Int (M)
u|∂M = 0 in (0, T ) × ∂M
u(0) = u0.

Then, if u satisfies u = 0 on [0, T ] × ω, then u = 0 on [0, T ] ×M.

Remark 3.21. A sharper unique continuation result was obtained by Filippas, Laurent, and Léautaud
[FLL25], in which the analyticity assumption was relaxed to the Gevrey 2 class.

3.6.2. Unique continuation for the nonlinear equation. We now come to prove Theorem 1.2 and
Theorem 1.3.

Proof of Theorem 1.2. Let u be a solution of (3.23) which belongs to C0([0, T ], H1(M)) with finite
Strichartz norms. Since u solves the elliptic equation ∆gu = f(u) in (0, T )×ω and f is subcritical,
by elliptic regularity and bootstrap (see [GT01, Theorem 9.19]) we improve the regularity of u in
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(0, T ) × ω, which then allows us to apply the propagation of regularity result Theorem 3.10 to
obtain that u is uniformly bounded in C0([0, T ], Hs(M)) for any s ∈ (1, 2], but fixed. We are then
in position to apply Theorem 1.1 to obtain that t ∈ (0, T ) 7→ u(t, ·) ∈ H2(M) is analytic.

Actually, Theorem 3.10 implies that u belongs to C∞(
(0, T )×M

)
. Now, set z = ∂tu and observe

that it solves {
i∂tz + ∆gz = f ′(u)z on (0, T ) ×M,

z = 0 on (0, T ) × ω.

Since (t, x) 7→ f ′(u(t, x)) is smooth and analytic in t, and thus bounded, we can apply Theorem 3.20
to obtain that z ≡ 0. This means that u is constant in the time variable and hence it solves

−∆gu+ f(u) = 0, x ∈ M.

Multiplying by u the above equation and integrating by parts, in the case that P ′(r) ≥ C > 0 for
every r ≥ 0, we get

0 ≤
∫
M

|∇u|2dx = −
∫
M
P ′(|u|2)|u|2dx ≤ −C

∫
M

|u|2dx

and thus u must be equal to 0. □

The proof in dimension 3 is similar, we just point out the main differences.

Proof of Theorem 1.3. If u is a solution of (3.23) which belongs to X1,b
T with b > 1/2, due to elliptic

regularity arguments, u is smooth in (0, T )×ω and we can thus invoke the propagation of regularity

result Theorem 3.12 to obtain that u belongs to X1+ν,b
T for ν ∈ (1/2, 1]. By Sobolev embedding,

it also belongs to C0([0, T ], H1+ν(M)) and hence t ∈ (0, T ) 7→ u(t, ·) ∈ H1+ν(M) is analytic as a
consequence of Theorem 1.1. By setting z = ∂tu, we can apply Theorem 3.20 to obtain ∂tu = 0 in
(0, T )×M. Multiplying the resulting elliptic equation by u and integrating by parts we readily get

0 ≤
∫
M

|∇u|2dx+ α

∫
M

|u|2dx+ β

∫
M

|u|4dx = 0

and thus u ≡ 0. □

3.6.3. Unique continuation on unbounded domains. Here we provide an example of unique contin-
uation for the NLS in an unbounded domain. Let (R2, g) where the Riemannian metric g satisfies{

∀x ∈ R2 m Id ≤ g(x) ≤M Id
∀α ∈ N2, ∃Cα > 0,∀x ∈ R2 |∂αg(x)| ≤ Cα.

After [BGT04, Theorem 5], without any further geometric assumption g, it is known that the
Schrödinger equation enjoys the same Strichartz estimates as Theorem 3.5. Let us consider{

i∂tu+ ∆gu = P ′(|u|2)u (0, T ) × R2,
∂tu = 0 (0, T ) × ω,

(3.24)

where ω satisfies the GCC. After [BGT04, Remark A.5], we consider solutions to (3.24) which
belong to the analogous space YT in the same fashion as Theorem 3.6 in the compact case.

Proof of Theorem 1.5. To ease notation, from now on we will write f(u) = P ′(|u|2)u. Up to making
R > 0 larger, we can assume that R2 \B(0, R) ⋐ ω. Since ∂tu vanishes on (0, T )×

(
R2 \B(0, R)

)
⊂

(0, T ) × ω, we have −∆u+ f(u) = 0 with u ∈ H1(R2 \B(0, R)). Since f is subcritical, we can use
elliptic regularity and bootstrap (see, for instance, [GT01, Theorem 9.19]) to show that u = u(x)
belongs to C4 in the set R2 \ B(0, R). By Sobolev embedding and iteration, it belongs to Hk on
R2 \B(0, R) for every k ∈ N.

Let us consider r1 > R and a cutoff function χ ∈ C∞
c (R2) such that

• χ = 1 in B(0, R),
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• χ = 0 in R2 \B(0, r1),
• supp∇χ ⊂ B(0, r1) \B(0, R).

We follow the same strategy as before. As (1−χ)u is supported in R2\B(0, R) and does not depend
on the time variable, it is analytic as a map from t ∈ (0, T ) into Hs(R2) for any s ∈ (d/2, 2]. By
writing u = χu+ (1 − χ)u, it remains to prove that z := χu is analytic.

Step 1. Reduction to a fundamental domain. Let us take R1 > r2 > r1 > R and let us introduce
the square

TR1 = {(x1, x2) ∈ R2 | xi ∈ [−R1, R1], i = 1, 2},

which obviously contains the balls of radius R, r1 and r2. First, let us consider cutoff function
ψ ∈ C∞(R2, [0, 1]) such that

• ψ = 1 in B(0, r1),
• ψ = 0 in TR1 \B(0, r2),
• supp∇ψ ⊂ B(0, r2) \B(0, r1).

If geuc denote the euclidean metric in R2, we set a new metric by g1 = ψg+(1−ψ)geuc. This metric
is smooth satisfies g1 = g on suppχ ∪ supp∇χ ⊂ B(0, r1) and coincides with the euclidean metric
geuc outside of the ball B(0, r2).

Let ω1 = TR1 ∩ ω. Let χ̃ ∈ C∞(R2) be another cutoff with the same properties as χ and χ̃ = 1
on supp(χ). Since the operator f is local, we have χf(u) = χf(χ̃u). Also, since g1 = g on B(0, r1),
which is where z is supported, in TR1 we have ∆gz = ∆g1z and thus the local Sobolev norm coincides
there. Then z := χu satisfies{

i∂tz + ∆g1z = χf(z + h1) + h2 (0, T ) × TR1 ,
∂tz = 0 (0, T ) × ω1,

where we have set {
h1 : t ∈ [0, T ] 7−→ (1 − χ)χ̃u(t) ∈ H2(TR1),
h2 : t ∈ [0, T ] 7−→ [∆g, χ]u(t) ∈ H2(TR1).

This is indeed consistent since both (1−χ)χ̃u and [∆g, χ]u are supported in B(0, r1)\B(0, R) ⋐ TR1

where they do not depend on the time variable and enjoy higher regularity in space, say H2(R2).
By hypothesis u has finite Strichartz norms, which we can use in a similar way to what is

done in the compact boundaryless case (see [BGT04, Remark A.5]), to obtain that P ′(|u|2)u ∈
L2([0, T ],H1(R2)) and in particular, χP ′(|u|2)u ∈ L2([0, T ],H1(R2)). The latter translates into
χf(z + h1) ∈ L2([0, T ], H1(TR1)) (recall that χ = 0 outside B(0, r1)).

Step 2. Periodic extension. Since outside the ball B(0, r2) and up to the boundary of TR1 we have
g1 = geuc and the euclidean metric is translation-invariant, we can construct a manifold (T 2, g) with
fundamental domain TR1 and equipped with the inherited metric g whose projection coincides g1
in the fundamental domain. Note that our choice of cutoffs ψ, χ and χ̃ are consistent, in the sense
that the solution z is supported in B(0, r1) where the metric g is active and vanishes elsewhere,
and g1 transitions smoothly in regions. We can then consider a periodic extension of z, that is,
zP : [0, T ] × T 2 → C is defined by zP (·, x) = z(·, x∗) where x∗ is the unique representative of x
mod TR1 , and since supp z ⋐ TR1 , the periodization zP belongs to C0([0, T ], H1(T 2)). Reasoning
likewise for the remaining functions, we see that zP solves{

i∂tz
P + ∆gz

P = χP f(zP + hP1 ) + hP2 (0, T ) × T 2,
∂tz

P = 0 (0, T ) × ω̃1,
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where ω̃1 is the periodization of ω1 into T 2 and{
hP1 : t ∈ [0, T ] 7−→

(
(1 − χ)χ̃u

)P
(t) ∈ H2(T 2),

hP2 : t ∈ [0, T ] 7−→
(
[∆g, χ]u

)P
(t) ∈ H2(T 2).

First, since ω satisfies the Assumption GCC in (R2, g) and R2 \ B(0, R) ⋐ ω, so does ω̃1 on
(T 2, g). Indeed, on the set K = TR1 \ ω1, the active metric is g and thus every geodesic starting
there must enter ω1 in finite time and any other geodesic starting outside K is already on the
observation zone. Second, since the local Sobolev H1-norm in the support of χf is determined by
g, we get that χf(zP + hP1 ) ∈ L2([0, T ], H1(T 2)). Since the metric g1 = g on the support χf , the
local H1-norms computed with g and g1 coincides there we have

∥χf(zP + hP1 )∥L2([0,T ],H1(T 2)) = ∥χf(z + h1)∥L2([0,T ],H1(TR1
))

≤ ∥χf(u)∥L2([0,T ],H1(R2)).

This suffices to apply a slight variation of Theorem 3.10 with extra regular parameter (see [DGL06,
Section 3]), which allows us to propagate regularity, obtaining zP ∈ C0([0, T ], H2(T 2)). We are
then in the configuration of Theorem 1.8. As we did in the proof of Theorem 1.1, we get that
t ∈ (0, T ) 7→ zP (t) ∈ H2(T 2) is real analytic and thus we can proceed we did in Theorem 1.3 to
obtain that zP is independent of t. By projection into the fundamental domain, we obtain that
t ∈ (0, T ) 7→ χu(t) ∈ H2(TR1) is real analytic.

Summarizing, by going back to u = χu+(1−χ)u, we have proved that t ∈ (0, T ) 7→ u(t) ∈ H2(R2)
is constant and thus −∆gu+ P ′(|u|2)u = 0 in R2. For any x0 ∈ R2 and r > 0 we have then

0 ≤
∫
B(x0,r)

|∇u|2dx = −
∫
B(x0,r)

P ′(|u|2)|u|2dx ≤ −C
∫
B(x0,r)

|u|2dx.

Therefore, u = 0 on B(x0, r) and being both x0 and r arbitrary, we conclude that u ≡ 0. □

Appendix A. Analysis tools

A.1. ODEs in Banach spaces. We now introduce the two different notions of ODEs in Banach
spaces used in the present article. Let us consider the framework of Section 2 and let I ⊂ R be a
nonempty interval and take s0 ∈ I.

For any s ∈ R, we can easily extend esA to C0([0, T ], Xσ) by the formula[
esAV

]
(t) = esAV (t),

for V ∈ C0([0, T ], Xσ). If H ∈ L1
(
I, C0([0, T ], Xσ)

)
, we say that ξ ∈ C0

(
I, C0([0, T ], Xσ)

)
satisfies{

d

ds
ξ(s) = Aξ(s) +H(s), s ∈ I,

ξ(s0) = ξ0,
(A.1)

with ξ0 ∈ C0([0, T ], Xσ), if it satisfies

ξ(s) = e(s−s0)Aξ0 +

∫ s

s0

e(s−w)AH(w)dw, ∀s ∈ I, (A.2)

with equality in C0([0, T ], Xσ).

Lemma A1. If H ∈ L1
(
I, C0([0, T ],PnX

σ)
)
and ξ ∈ C0

(
I, C0([0, T ],PnX

σ)
)
for some n ∈ N and

satisfies
d

ds
ξ(s) = Aξ(s) +H(s) in the previous sense. Then, it satisfies this equation in the sense

of Cauchy-Lipschitz.

Proof. It follows as an application of Duhamel’s formula. □
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Lemma A2. For T1 < T2, let us consider T ∈ (0, T2 − T1), η ∈ (0, T2 − T − T1) and I :=
[T1 − η, T2 − T − η]. Let G ∈ C0([T1, T2], X

σ) and assume that V ∈ C0([T1, T2], X
σ) is a mild

solution of {
d

dt
V (t) = AV (t) +G(t) for t ∈ [T1, T2]

V (T1) = V0.

If we define ξ,H ∈ C0
(
I, C0([0, T ], Xσ)

)
by ξ(s) = V s and H(s) = Gs with

ξ(s)(t) = V s(t) = V (t+ s+ η) and H(s)(t) = Gs(t) = G(t+ s+ η),

for all s ∈ I, t ∈ [0, T ], then, for any s0 ∈ I, ξ is solution in the sense of (A.2) of{
d

ds
ξ(s) = Aξ(s) +H(s), s ∈ I,

ξ(s0) = ξ0,

with ξ0 = V s0 = V (· + s0 + η).

Proof. By Duhamel’s formula, for all t ∈ [T1, T2] we have

V (t) = e(t−T1)AV0 +

∫ t

T1

e(t−τ)AG(τ)dτ.

with V (T1) = V0. Pick s0 ∈ I. First observe that, for any t ∈ [0, T ],

V (t+ s0 + η) = e(t+s0+η−T1)AV0 +

∫ t+s0+η

T1

e(t+s0+η−τ)AG(τ)dτ

Then, for s ∈ I and t ∈ [0, T ],

V s(t) = V (t+ s+ η) = e(t+s+η−T1)AV0 +

∫ t+s+η

T1

e(t+s+η−τ)AG(τ)dτ

= e(s−s0)AV (t+ s0 + η) +

∫ s

s0

e(s−w)AG(t+ w + η)dw

= e(s−s0)AV s0(t) +

∫ s

s0

e(s−w)AGw(t)dw.

So, since this is true for any t ∈ [0, T ], it gives

V s = e(s−s0)AV s0 +

∫ s

s0

e(s−w)AGwdw, ∀s ∈ I.

By hypothesis, this equality holds in C0([0, T ], Xσ), and is exactly (A.2), as we wanted to prove. □

A.2. Complex analysis in Banach spaces. Let E and F be Banach spaces over the same field K,
with K being either R or C. Along this appendix, we will introduce several notions of differentiability
and analyticity needed to unify the different results used throughout the present article.

We first start with a notion of differentiability in Banach spaces, often referred to as Fréchet
differentiability.

Definition A3. Let U be an open subset of E. A mapping f : U → F is said to be K-differentiable
(or just differentiable) if for each point x ∈ U there exists a mapping A ∈ L(E,F ) such that

lim
h→0

∥f(x+ h) − f(x) −Ah∥F
∥h∥E

= 0.

Such map A is called the derivative of f at x and it is denoted by Df(x).
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We can rephrase the above definition as follows: for each x ∈ U there exists a mapping A ∈
L(E,F ) such that

f(x+ h) = f(x) +Ah+ o(h)

where o(h)/∥h∥E → 0 as h → 0. With this formulation at hand, we state the chain rule in this
setting.

Theorem A4. [Muj86, Theorem 13.6] (Chain rule) Let E, F and G be Banach spaces over K.
Let U ⊂ E and V ⊂ F be two open sets and let f : U → F and g : V → G be two differentiable
mappings with f(U) ⊂ V . Then the composite mapping g ◦ f : U → G is differentiable as well and
D(g ◦ f)(x) = Dg(f(x)) ◦Df(x) for every x ∈ U .

We now come to introduce the different notions of holomorphic or analytic maps that have been
used throughout the present article. A mapping P : E → F is said to be an k-homogeneous
polynomial if there exists a k-linear mapping A : Ek → F such that P (x) = A(x, . . . , x) for every
x ∈ E. We represent by P(kE,F ) the Banach space of all continuous k-homogeneous polynomials
from E into F under the norm

∥P∥P(kE,F ) = sup{∥P (x)∥F | x ∈ E, ∥x∥E ≤ 1}.

A series
∑∞

k=0 fk of homogeneous polynomials fk ∈ P(kE,F ) will shortly be called a formal series
from E to F . The space of all formal series with continuous terms will be denoted by S(E,F ). We
say that a formal series

∑∞
j=0 fj converges in a set U ⊂ E if for every x ∈ U the series

∑∞
j=0 fj(x)

is convergent.

Definition A5. Let U be an open subset of E and K = C (resp. R). A continuous mapping
f : U → F is said to be holomorphic (resp. analytic) if for each x ∈ U there exist a series∑∞

j=0 fj ∈ S(E,F ) such that

f(x+ h) =
∞∑
j=0

fj(h)

for all h in a neighborhood of 0 ∈ E. We shall denote by H(U,F ) the vector space of all holomorphic
mapping from U into F .

Remark A6. The sequence (fj) which appears in the above definition is uniquely determined by f
and x. We then shall write fj = fj(x) for every j ∈ N0.

The previous definition has been taken from [BS71a] and [Muj86]. Observe that here we have
reserved the concept holomorphic for the complex case and analytic for the real case. When going
through the literature, it is often the case that holomorphicity is introduced with a different defi-
nition. We will introduce these notions and then we will establish that they are equivalent. From
now on, assume that K = C, unless we say otherwise.

Definition A7. A mapping f : U → F is said to be:

(1) weakly holomorphic if ψ ◦ f is holomorphic for every ψ ∈ F ∗, where F ∗ is the dual space of
F ;

(2) G-holomorphic if for all x ∈ U and h ∈ E, the mapping ζ 7→ f(x + ζh) is holomorphic on
the open set {ζ ∈ C | x+ ζh ∈ U}.

The following theorem shows that one of the most important features of the complex analysis
still holds when working with functions between complex Banach spaces.

Theorem A8. [Muj86, Theorem 8.12, Theorem 8.7, Theorem 13.16] Let U be an open subset of
E, and let f : U → F . The following statements are equivalent:
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(1) f is C-differentiable,
(2) f is holomorphic,
(3) f is weakly holomorphic,
(4) f is continuous and G−holomorphic.

For a given x ∈ U and h ∈ E, let us denote by ρ(x, h) the supremum of all numbers ρ such that
|ζ| ≤ ρ implies x+ ζh ∈ U .

Theorem A9. [Muj86, Theorem 7.1, Corollary 7.3] (Cauchy integral formula) Let U be an open
subset of E, and let f ∈ H(U,F ). Let x ∈ U , h ∈ E and r < ρ(x, h). Then for each λ ∈ D(0, r) we
have

f(x+ λh) =
1

2πi

∫
|ζ|=r

f(x+ ζh)

ζ − λ
dζ,

where |ζ| = r denotes a circle of radius r an center at the origin in the complex plane. Moreover,
for each j ∈ N we have

fj(x)(h) =
1

2πi

∫
|ζ|=r

f(x+ ζh)

ζj+1
dζ.

Let f ∈ H(U,F ). We can expand f(x+ λh) as

f(x+ λh) =

∞∑
j=0

fj(x)(λh) =

∞∑
j=0

λjfj(x)(h),

which holds uniformly for |λ| ≤ r with 0 ≤ r < ρ(x, h). For x ∈ U we may define the nth variation
δnf(x, h) of f(x) with increment h as

δnf(x, h) =

[
dn

dζn
f(x+ ζh)

]
ζ=0

.

It can be seen that δnf(x, h) is homogeneous of degree n in h. Moreover, looking at the Taylor
development of the holomorphic map λ ∈ D(0, r) 7→ f(x+ λh) ∈ F , in view of the previous result,
it follows that

δnf(x, h) =
n!

2πi

∫
|ζ|=r

f(x+ ζh)

ζm+1
dζ. (A.3)

Remark A10. Formula (A.3) does not depend on the chosen r < ρ(x, h).

The above discussion leads us to the classical Cauchy estimates.

Proposition A11. [Muj86, Corollary 7.4] (Cauchy estimates) Let U be an open subset of E, and
let f ∈ H(U,F ). Let x ∈ U , h ∈ E and r < ρ(x, h). Then for each n ∈ N we have

∥δnf(x)(h)∥ ≤ r−n sup
|ζ|=r

∥f(x+ ζh)∥.

Remark A12. Actually, it is possible to have the Cauchy estimates locally around any point x ∈ U
or even uniformly in a ball (by assuming that f is bounded in there). Let us argue for the former
case, the latter being similar. By continuity, there exists rx > 0 such that ∥f(z)∥ ≤M for all z ∈ U
such that ∥z − x∥ ≤ rx, where M = M(x) > 0 is a bound that depends on x. Let h ∈ E. Thus, for
z such that ∥z − x∥ ≤ rx/2, we have z + ζh ∈ U for any |ζ| ≤ rx

2∥h∥ , since

∥z + ζh− x∥ ≤ ∥z − x∥ + ∥h∥ ≤ rx
2

+
rx

2∥h∥
∥h∥ = rx
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and so z + ζh ∈ B(x, rx) ⊂ U . Due to the Cauchy estimates

∥δnf(z)(h)∥ ≤
(

2∥h∥
rx

)n

sup
|ζ|= rx

2∥h∥

∥f(z + ζh)∥ ≤M

(
2∥h∥
rx

)m

.

The previous estimate holds uniformly on ∥z − x∥ ≤ r∗, for any r∗ < rx
2 .

A.2.1. Some regularity results. Here we state some useful regularity results that are used throughout
Section 2. First, we have the following characterization of holomorphic mappings whose domain is
an open set in a product of Banach spaces.

Proposition A13. [Muj86, Proposition 8.10] Let E1, . . . , En and F Banach spaces, and let U be
an open subset of E1 × . . . × En. Then a mapping f : U → F is holomorphic if and only if f is
continuous and f(ζ1, . . . , ζn) is holomorphic in each ζj when the other variables are held fixed.

We can say the following in regards to the regularity of the n-th variation of f .

Proposition A14. [BS71a, Proposition 6.4] Assume K = C (resp. R). If f : U → F is holomorphic
(resp. analytic), then for every n ∈ N the function

δnf : (x, h) ∈ U × E 7−→ δnf(x)(h) ∈ F

is holomorphic (resp. analytic).

Proposition A15. [Muj86, Exercise 8.E.] Let E, F , G be Banach spaces, let U be an open subset
of E, and let f : U → L(F,G). The following conditions are equivalent:

(1) f is holomorphic.
(2) The mapping x ∈ U 7→ f(x)(y) ∈ G is holomorphic for each y ∈ F .
(3) The function x ∈ U 7→ η(f(x)(y)) ∈ C is holomorphic for each y ∈ F and η ∈ G′.

Let Isom(E,F ) ⊂ L(E,F ) be the space of invertible linear continuous maps from E into F .
Let I : Isom(E,F ) → L(F,E) be the map I(u) = u−1 ∈ Isom(F,E). As a consequence of the
Neumann series (see [Car67, Theorem 1.7.3]) we can establish that I is an analytic map in suitable
neighborhoods of bijective maps. Indeed, for any L ∈ L(E,F ) on an ε-neighborhood of a bijection
T ∈ L(E,F ) with 0 < ε < 1/∥T−1∥, then L−1 ∈ L(F,E) and

L−1 =
(
I − T−1(T − L)

)−1
T−1 =

∞∑
k=0

(
T−1(T − L)

)k
T−1 =

∞∑
k=0

mk(T − L)k,

where mk is defined by

mk(L1, . . . , Lk) =
1

k!

∑
π∈Sk

T−1 ◦ Lπ(1) ◦ T−1 ◦ Lπ(2) ◦ . . . ◦ T−1 ◦ Lπ(k) ◦ T−1,

with the summation being taken over all k! permutations of {1, . . . , n}. This shows that I : L 7→ L−1

from Isom(E,F ) into Isom(F,E) is K-analytic on the neighborhood of T given by the previous result.

Lemma A16. Suppose T ∈ L(E,F ) is a bijection. Then for any 0 < ε < 1/∥T−1∥ such that
if L ∈ L(E,F ) and ∥T − L∥ < ε, then L−1 ∈ L(F,E). Moreover, I : L 7→ L−1 as a map from
Isom(E,F ) into Isom(F,E) is K-analytic on any of these ε-neighborhood centered at T .

A.2.2. On the complexification. Let E and F be real Banach spaces. The canonical complexification
EC = E + iE is a complex Banach space equipped with the norm whose square is ∥x + iy∥2EC

=

∥x∥2E + ∥y∥2E . If A ∈ L(E,F ) is a bounded linear operator, its complexification is

AC(x+ iy) := A(x) + iA(y), x, y ∈ E.

Note that AC ∈ L(EC, FC), where the latter denotes the space of C-linear bounded operators from
EC into FC with the inherited complex structure.
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Lemma A17. It holds L(EC, FC) ≃ L(E,F )C as complex Banach spaces and the map{
ΨE→F : L(E,F )C −→ L(EC, FC)

A+ iB 7−→ AC + iBC,

is C-linear isometric isomorphism in between Banach spaces.

Proof. Since the spaces E and F are fixed, we drop the subscript E → F . Under the identification
EC = E + iE and FC = F + iF , we see that Ψ acts as(

A −B
B A

)
: (x, y) 7−→ (Ax−By,Bx+Ay).

With this at hand is not hard to see with some algebra that Ψ(S)Ψ(T ) = Ψ(ST ) for any T ∈
L(E,F )C and S ∈ L(F,G)C.

Let us denote by ιE : E → EC the embedding ι(x) = x + i0 and define ιF similarly. Let EF
1 ,

EF
2 ∈ L(FC, F ) be the bounded R-linear projectors

EF
1 (u+ iv) = u and EF

2 (u+ iv) = v.

Given T ∈ L(EC, FC), we define A := EF
1 TιE and B := EF

2 TιE , both of them belonging to L(E,F ).
For any x, y ∈ E we have

T (x) = Ax+ iBx and T (iy) = iT (y) = −By + iAy.

Hence, the C-linearity of T forces

T (x+ iy) = (Ax−By) + i(Bx+Ay), ∀x, y ∈ E.

This means that T = Ψ(A+ iB) and thus Ψ is onto.
For T = Ψ(A + iB) and under the block-matrix identification of Ψ, some algebra along with a

trigonometric change of variable, lead us to

∥Ψ(A+ iB)∥L(EC,FC) = sup
x,y∈E
x,y ̸=0

√
∥Ax−By∥2F + ∥Bx+Ay∥2F√

∥x∥2E + ∥y∥2E
= sup

θ∈[0,2π]
∥A cos θ −B sin θ∥L(E,F ).

Since the canonical complexification norm on L(E,F )C is defined so that

∥A+ iB∥L(E,F )C := sup
θ∈[0,2π]

∥A cos θ −B sin θ∥L(E,F ),

we conclude that Ψ is an isometric isomorphism of Banach spaces. □

Let (E, ⟨·, ·⟩E) be a real Hilbert space. Its canonical complexification EC = E + iE is a complex
Hilbert space equipped with the inner product

⟨u, v⟩EC = ⟨x1, y1⟩E + ⟨x2, y2⟩E + i
(
⟨x2, y1⟩E − ⟨x1, y2⟩E

)
,

with x = x1 + ix2 and y = y1 + iy2. If (F, ⟨·, ·⟩F ) is another Hilbert space, we can introduce the
bounded linear map Adj : L ∈ L(E,F ) 7→ L∗ ∈ L(F,E), see [Bre11, Remark 16]. Here the adjoint
is taken with respect to the real structure of E and F .

Lemma A18. The map Adj admits a holomorphic extension Ãdj from L(EC, FC) into L(FC, EC).

Proof. Since Adj is bounded and linear, it can be extended as a holomorphic C-linear map from
L(E,F )C into L(F,E)C, by Adj(L1 + iL2) = L∗

1 + iL∗
2 where the adjoint is taken with respect to the

real underlying structures of E and F . Then Ãdj := ΨF→E ◦Adj ◦Ψ−1
E→F is the desired holomorphic

extension. □

Through complexification of the underlying spaces, the following theorem permits to treat a real
analytic function as a restriction of some holomorphic function.
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Theorem A19. [BS71a, Theorem 7.2] Assume K = R. For any analytic function f : U → F one

may find an open subset V of EC and a holomorphic function f̃ : V → FC such that U ⊂ V and
f̃|U = f .

A.3. Analysis tools. The following result, known as the Uniform Contraction Principle, elucidates
the regularity that can be obtained for a parameter-dependent fixed point.

Theorem A20. [CH82, Theorem 2.2] Let U , V be open sets in Banach spaces X, Y , let U be the
closure of U , T : U × V → U a uniform contraction on U and let g(y) be the unique fixed point of
T (·, y) in U . If T ∈ Ck(U × V,X), 0 ≤ k <∞, then g(·) ∈ Ck(V,X). If there is a neighborhood U1

of U such that T is analytic from U1 × V to X, then the mapping g(·) is analytic from V to X.

Observe that the definition of analyticity used in [CH82] combines G-analyticity and weakly
analyticity. From Theorem A8, these notions of analyticity are equivalent.

We recall the following classical Aubins-Lions lemma.

Theorem A21. [BF13, Theorem II.5.16] Let B0 ⊂ B1 ⊂ B2 be three Banach spaces. We assume
that the embedding of B1 in B2 is continuous and that the embedding of B0 in B1 is compact. Let
p, r such that 1 ≤ p, r ≤ +∞. For T > 0, we define

Ep,r =

{
v ∈ Lp([0, T ], B0) | dv

dt
∈ Lr([0, T ], B2)

}
.

(1) If p < +∞, the embedding of Ep,r in Lp([0, T ], B1) is compact.
(2) If p = +∞ and if r > 1, the embedding of Ep,r in C0([0, T ], B1) is compact.

Appendix B. Pseudodifferential operators

Let M be a compact boundaryless smooth connected Riemannian manifold of dimension d.
For each x ∈ M we denote by TxM the tangent space to M at x and by T ∗

xM its dual space,
the cotangent space to M at x. Let π : TM → M and π : T ∗M → M denote the canonical
projections into the manifold. We denote by ⟨·, ·⟩x = ⟨·, ·⟩T ∗

xM,TxM the duality bracket at x. The
manifold M is equipped with a Riemannian metric g, meaning that for any x ∈ M, gx is a positive
definite quadratic form on TxM depending smoothly on x. This Riemannian metric induces an
isomorphism TxM → T ∗

xM defined as v 7→ v♭ := gx(v, ·), with inverse v = (v♭)♯. The metric g on
TM induces a metric g∗ on T ∗M, canonically defined by g∗x(ξ, η) = gx(ξ♯, η♯) for x ∈ M and ξ,
η ∈ T ∗

xM. We denote by S∗M the Riemannian cosphere bundle over M, with fiber x ∈ M given
by {ξ ∈ TM | g∗x(ξ, ξ) = 1}.

For classical references on pseudodifferential operators, see [Hör85, Shu01]. Here below we follow
the presentation of [Lef25].

B.1. Definitions. Let X ⊂ Rd be an open subset. We say that a ∈ Sm
loc(X × Rd) if φ(x)a(x, ξ)

belongs to the usual class of symbols Sm(Rd×Rd) for every φ ∈ C∞
c (X). We consider a quantization

Op(a), defined as a map from C∞
c (X) into D′(X) whose Kernel is given by

K(x, y) =
1

(2π)d

∫
Rd
ξ

ei(x−y)·ξa(x, ξ)dξ.

The set consisting on such quantizations Op(a) of symbols a ∈ Sm(X × Rd) is called the class
of pseudodifferential operators of order m and is denoted by Ψm(X). This choice of quantization
is not unique. The class of smoothing pseudodifferential operators Ψ−∞(X) corresponds to the
quantization of symbols a ∈ S−∞(X × Rd) := ∩m∈RS

m(X × Rd).
Any diffeomorphism κ : U ⊂ M → X ⊂ Rd induces a map κ∗ : C∞(T ∗M) → C∞(T ∗U) defined

by κ̃∗φ(x, ξ) = φ(κ(x), dκ(x)−trξ).
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Definition B1. The class Ψm(M) of pseudodifferential operators of order m is defined as the set
of continuous linear operators A = A(x,Dx) : C∞(M) → C∞(M) such that:

• For any χ, χ′ ∈ C∞(M) with disjoint support, χAχ′ is smoothing.
• For every chart (κ, U), for every χ, χ′ ∈ C∞

c (U), the operator Aκ,χ,χ′ := κ∗χ
′Aχκ∗ belongs

to Ψm(X).

The set Ψm
phg(M) of polyhomogeneous pseudodifferential operators of order m is defined likewise

by considering instead the class Ψm
phg(X) in the latter property.

The symbol space Sm(T ∗M) consists of those functions a ∈ C∞(T ∗M) such that for any chart
κ : U → X ⊂ Rd, (κ−1)∗a ∈ Sm(X × Rd).

We say that a family (κi, Ui)
N
i=1 is a family of cutoff charts if

⋃N
i=1 Ui = M covers M. For a given

family of cutoff charts, we consider a partition of unity
∑N

i=1 χi = 1 subordinated to that cover, as
well as other cutoff functions χ′

i ∈ C∞
c (Ui) such that suppχi ⋐ {χ′

i = 1}. A quantization procedure
is a map Op : Sm(T ∗M) → Ψm(M) given by

Op(a)u =
N∑
i=1

κ∗i
(
(κi)∗χ

′
iOpRd((κ̃i)∗(χ

′
ia)

)
(κi)∗χiu)

where OpRn is a previously chosen quantization on Rd. This way, by [Lef25, Proposition 5.2.14], ev-
ery A ∈ Ψm

phg(M) is of the form Op(a)+R where a ∈ Sm(T ∗M) and R ∈ Ψ−∞(M). Also, given A ∈
Ψm(M), its principal symbol σA ∈ Sm(T ∗M) is well-defined and belongs to Sm(T ∗M)/Sm−1(T ∗M).

We recall the algebra of pseudodifferential operators in the following proposition.

Proposition B2. [Lef25, Theorem 5.2.16, Lemma 5.2.17] The following holds:

(1) If A ∈ Ψm1(M) and B ∈ Ψm2(M), then AB ∈ Ψm1+m2(M) and σA◦B = σAσB = σB◦A.
Additionally, [A,B] ∈ Ψm1+m2−1 and σ[A,B] = 1

i {σA, σB}.
(2) If C ∈ Ψm(M), then C∗ ∈ Ψm(M) and σC∗ = σC .

Regarding their mapping properties, we have the following.

Proposition B3. [Lef25, Theorem 5.4.9] Let A ∈ Ψm(M). Then, for every s ∈ R, A : Hs+m(M) →
Hs(M) is bounded. In particular, if K ∈ Ψ−∞(M), then for all s, t ∈ R, K : Hs(M) → Ht(M) is
bounded.

B.1.1. Invertibility and positivity. Let T ∗
0M denote the cotangent bundle of M with the zero section

removed.

Definition B4. An operator A ∈ Ψm(M) is elliptic at (x0, ξ0) ∈ T ∗
0M if there exists C > 0 and a

conic neighborhood V ⊂ T ∗M of (x0, ξ0) such that for all (x, ξ) ∈ V and |ξ|x ≥ C

|σA(x, ξ)| ≥ ⟨ξ⟩m/C,
We say that A is elliptic if it is elliptic on T ∗M.

The following lemma states the existence of a local parametrix.

Lemma B5. [Lef25, Lemma 5.3.11] Let A ∈ Ψm(M) be elliptic at (x0, ξ0) ∈ T ∗
0M. Then, there

exists B ∈ Ψ−m(M) elliptic at (x0, ξ0) ∈ T ∗M, χ ∈ S0(T ∗M) equal to 1 in a conic neighborhood
of (x0, ξ0), and K1, K2 ∈ Ψ−∞(M) such that

AB = Op(χ) +K1, BA = Op(χ) +K2.

Theorem B6. (The sharp G̊arding’s inequality) [Lef25, Theorem 6.1.9] Let A ∈ Ψm
phg(M) with

m ≥ 0 and assume that ℜ(σA) ≥ 0. Then, there exists a constant C > 0 such that

ℜ⟨Au, u⟩L2(M) ≥ −C∥u∥2
H

m−1
2 (M)

.
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B.1.2. Symbol transport. Let p(x, ξ) = |ξ|2x = g∗x(ξ, ξ) ∈ C∞(T ∗
0M) and denote by Hp and Φt the

associated Hamiltonian vector field and flow, respectively, meaning that

d

dt
Φt(ρ) = Hp(Φt(ρ)), Φ0(ρ) = ρ ∈ T ∗M,

which, in local charts can be expressed by Hp = ∇ξp · ∇x −∇xp · ∇ξ. The following result tell us
how symbols can be transported along the Hamiltonian flow associated to p.

Lemma B7. [Lau14, Lemma 3.1] Let ρ0 ∈ T ∗
0M . Then, for any ρ1 = Φt(ρ0) and V1 a small

conic neighborhood of ρ1, there exists a neighborhood V0 of ρ0 such that for any symbol c = c(x, ξ)
homogeneous of order s supported in V0, there exists another symbol b = b(x, ξ) homogeneous of
order s− 1 such that

Hpb(x, ξ) = c(x, ξ) + r(x, ξ)

where r is of order s supported in V1.
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[CH82] Shui Nee Chow and Jack K. Hale. Methods of bifurcation theory. Springer-Verlag, New York-Berlin, 1982.
[Deh84] Belhassen Dehman. Uniqueness of the Cauchy problem for a class of quasihomogeneous operators. J. Math.

Kyoto Univ., 24:453–471, 1984.
[DGL06] B. Dehman, P. Gérard, and G. Lebeau. Stabilization and control for the nonlinear Schrödinger equation on

a compact surface. Math. Z., 254(4):729–749, 2006.
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[Hör63] Lars Hörmander. Linear partial differential operators, volume 116 of Grundlehren Math. Wiss. Springer,

Cham, 1963.
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Sorbonne Université, Université Paris Cité, CNRS, Laboratoire Jacques-Louis Lions, LJLL, F-75005
Paris, France

Email address: cristobal.loyola@sorbonne-universite.fr


	1. Introduction
	2. Abstract analytic reconstruction
	3. Applications to the nonlinear Schrödinger equation
	Appendix A. Analysis tools
	Appendix B. Pseudodifferential operators
	References

