AN EXPLICIT TIME FOR THE UNIFORM NULL CONTROLLABILITY OF A
LINEAR KORTEWEG-DE VRIES EQUATION

NICOLAS CARRENO AND CRISTOBAL LOYOLA

ABSTRACT. In this paper, we consider a linear Korteweg-de Vries equation posed in a bounded interval and
study the time dependency with respect to the interval length and the transport coefficient, for which the
uniform null controllability holds as the dispersion coefficient goes to zero. We consider two cases of boundary
controls. First, only one control on the left-end of the interval, and then, two controls acting on the right.
The strategy is based on the combination of an exponential dissipation inequality and suitable Carleman
estimates for each case.

1. INTRODUCTION

1.1. State of the art of the problem. Let T'> 0, L > 0 and @ := (0,7 x (0, L). Consider the following
linear Korteweg-de Vries equation posed in a bounded interval

Yt + EYzaa — Myl, = 07 (t,.’l?) S Q7
y(t’ O) = ul(t>7 y(tv L) = u2(t)7 te (OvT)v (1 1)
y(t, L) =wus(t), te(0,T), ’
y(0,2) = yo(z), z€(0,L),

where € > 0, M > 0 are the dispersion and transport coefficients, respectively, ui, us, us are the controls and
Yo is the initial condition.

The controllability properties of the Korteweg-de Vries equation, which is one of the most important
dispersive equations, have been extensively studied over the last two decades. We refer, for instance, to the
surveys Cerpa [4], and Rosier and Zhang [I8] to consult the main results in this area. Here, we are interested
in the uniform null controllability of the linear Korteweg-de Vries equation [I.I] with respect to the dispersion
parameter €. In particular, we search for a time Ty > 0 such that for all T > Ty and yo € L?(0, L), there
exists controls uy, uy and us which drive the state y to 0 at ¢ = T, while the controls remain uniformly
bounded as e converges to 0.

The quantity which measures the cost of the null controllability of is defined as the best constant
Clost(€) such that, for all yo € L?(0, L) and u1, ug, ug € L?(0,T) driving the solution of toOatt="1T,
the following inequality holds

||u1||%2(o,T) + ||U2||%2(0,T) + ||U3||2L2(0,T) < Ccost(E)Hyonm(o,Ly

The constant C,,st(€) is well defined provided that the equation is well posed and null controllable, with
initial condition yo € L?(0, L) and controls uy, us, uz € L?(0,T). It is a classical result that is well posed
for fixed ¢ > 0 and M > 0 [I0]. Likewise, for a fixed ¢ > 0 the null controllability of has been firstly
established by Rosier [I7] using only one Dirichlet control at 2 = 0 and later improved by Glass and Guerrero
[8] requiring less regularity on the initial condition and establishing an upper bound of Cs:(€).

From a classical property about the null controllability of the transport equation, one would expect that
for a time large enough, the cost of the null controllability will decrease to 0 as € tends to 07. Indeed, for
the case with one active Dirichlet control at « = 0, Glass and Guerrero [10] obtained a uniform upper bound
of Ctost(¢) which implies such behavior provided that the time is large enough.

This kind of problems has been first studied in the context of parabolic equations. For the case of a
vanishing diffusion coefficient in the heat equation, an explicit time from which the uniform null controllability
property holds has been established by Coron and Guerrero [5] by a Carleman estimate approach. Later,
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Glass [9] by a method based on complex analysis improved the previous result. Until now, the best known
times, for both explosion and convergence to zero for the cost of null controllability, have been obtained by
Lissy [13], [15] where the proof relies on the link between the cost of the null controllability and the cost of
fast controls for the heat equation. In the case of higher-order parabolic equations, Carreno and Guzman
[3] studied an equation composed by a transport term, a fourth order term with vanishing viscosity and two
boundary controls at the left, establishing an explicit time for which the uniform null controllability holds
by using Carleman estimates. By adapting the complex analytic method [9], Lopez-Garcia and Mercado
[16] studied a different problem, composed by a transport term and simultaneous vanishing fourth- and
third-order terms, using only a single boundary control.

As for the Korteweg-de Vries equation the uniform null controllability was proved by Glass and
Guerrero [§] using three active boundary controls while the same authors in [I0] improved their previous
null controllability result by using only one active Dirichlet control at the left of the interval. Then, Carreno
and Guerrero [1, [2] obtained some results about the behavior of the cost of the null controllability in the
case of Colin-Ghidaglia boundary conditions. In [I], the authors proved that the cost with one control at
the left-end point of the interval grows exponentially as € goes to zero for any T > 0, and in [2] a uniform
null controllability result is proved in the zero-dispersion limit by using two controls with a restriction on the
initial condition.

1.2. Main results. The first main result recovers the conclusion of [I0, Theorem 1.1] for the case of null
right boundary conditions, that is, us = ug = 0. Nevertheless, here we establish an explicit lower bound for
the time for which the uniform null controllability holds.

Theorem 1. Let T > 23.25L/M with M > 0 and consider ugs = uz = 0. There exists two positive constants
C and c independent of T, L, ¢ > 0 and M such that for any ¢ > 0 and yo € L?(0, L) there exists a control
uy € L2(0,T) driving the state y of to 0 in time T which can be estimated as follows

9 L5 L3/2 )
s sy < O exp { iz bl (1.2
In this case, the cost of the null controllability is defined by

1 : 122 0,m)
Ccost(s) = sup m’z}n Noll2am
yo€L?(0,L) u1€L?(0,T) ||y0||L2(o,L)

YoA0 y(T)=0

We obtain the following corollary about the behavior of the cost of null controllability.

Corollary 2. If T > 23.25L/M with M > 0, then C}

L st(€) > 0 ase —0F.

If the Dirichlet control at the right is kept null, that is, u; = 0, a similar null controllability result is
obtained.

Theorem 3. Let T > 24.31L/M with M > 0 and uy = 0. There exists two positive constants C' and c
independent of T, L, € > 0 and M such that for any ¢ > 0 and yo € L?(0,L) there exists controls us,
uz € L2(0,T) driving the state y of to 0 in time T which can be estimated as follows

C (L*+L° L3/?

2 2 2

lualiscor) + luallscor) < 55 () e { ~es7zazs | Bl (13)
Now the cost of null controllability is defined by

HU2||%2(0,T) + ||u3||%2(0,T)

C2%.,(e):= sup min 5
yoeL?(0,L) (u2,us)EL?(0,T) lyoll2(0,1.)
Yo 7#0 y(T)=0

As expected, we get the following corollary.

Corollary 4. If T > 24.31L/M with M > 0, then C?

cost

() > 0ase— 0" .

From the Hilbert Uniqueness Method (see, for instance, [12], [€]), it is well known that inequalities
and [I.3] are equivalent to an observability inequality for the solutions of the adjoint system of [[.I} To prove
the observability, we combine an appropriate Carleman estimate with an exponential dissipation inequality
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for the solutions of the adjoint system of under the assumption that T > 7L/M. The constant appearing
in the observability inequality will be of the form C* exp{K (e, L, M,T)}. Choosing the weight function of
the Carleman estimate in a suitable way and integrating in an appropriate time-cut interval the Carleman
estimate, by an optimization problem we obtain an explicit 7* for which exp{K (e, L, M)} — 0 as ¢ — 0T.

1.3. Organization of the paper. The rest of the paper is organized as follows. In Section [2] we recall
some results concerning the well-posedness and null controllability of equation Section [3] is devoted to
Carleman estimates. In Section[d] we prove Theorems[I]and[3] Finally, in Section [5] we present an application
of the approach of this paper which improves a result from [3].

2. CAUCHY PROBLEM AND CONTROLLABILITY
In this section, we recall and formalize the well-posedness and the notion of null controllability for equa-

tion (1.1)).

2.1. Well-posedness. Now we introduce the notion of solutions by transposition in order to establish the
well-posedness result for the equation (1.1).

Definition 5. Let 7 > 0, yo € H'(0,L) and (u1,us,u3) € L?(0,L) x L?*(0,L) x H~/3(0,T). We call y a
solution by transposition of (L.1)), to a function y € L?((0,T) x (0, L)) satisfying

T T
// yfdrdt = (yo, 2|,_o) H-1(0,L)x H'(0,2) + 6/ UL 2|, oAt — € | UnZgg,_, dt
Q 0 0

+ e(us, ZmleL)H*1/3(O,T)><H1/3(0,T)7 (2.1)
for all f € L%((0,T) x (0, L)), where z € C([0,T]; H} (0, L)) N L*(0,T; H?(0, L)) is the solution of

_zt_gzmzz+MZ$:f7 (t,l’) €Q7
2(t,0) = z(t, L) = 2z,(t,0) =0, t€(0,T), (2.2)
2(T,x) =0, =€ (0,L).

The following well-posedness result is established in [§].

Proposition 6. Let yo € H~(0,L) and (u1,us,u3) € L*(0,L) x L?(0,L) x H='/3(0,T). Then there exists
a unique solution y of (1.1) satisfying

y € L*((0,T) x (0,L)) N C([0,T]; H~(0, L)),

and

C
lyllz2(0,1)x 0,)) + 1Yl Lo 0,751 (0,2)) < ;(||y0||H*1(O,L) + lJurll 20,y + lu2llL2 ) + lusll ir-1r50.7))
for some C > 0 independent of yg, u1, us, ug and €.

2.2. Controllability. The null controllability of system (1.1) can be characterized by the adjoint system,
which is given by
—Pt — EPrga T M(Pa: = 07 (t,.’IJ) € Qa
o(t,0) = @(t,L) = ¢.(t,0) =0, te(0,T), (2.3)
(,O(T,l') = @T(z)7 (S (OvL)7

where @7 € L?(0,L). Then, given yo € L?(0,L), u1, uz, ug € L*(0,T) are controls such that y(T,z) = 0 if

and only if
L T T T
/ YoP,—odr = —5/ ulgagmm:odt + {—:/ u2g0m‘w=Ldt — {—:/ u;,»gow‘z:Ldt,
0 0 0 0

for each o7 € L?(0, L), where ¢ is the corresponding solution of (2.3]) associated to ¢r.
From the classical duality between controllability and observability, we have the following characterizations
for the cases treated in this paper.
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Proposition 7. System (1.1)) is null controllable with us = uz = 0 if and only if there exists C' > 0 such that

L T
/0 |}y [Pda < C/O [ER— (2.4)

for each o1 € L*(0, L), where o is the solution of the adjoint system ([2.3)) associated to o € L*(0,L).

As a direct consequence of the previous result, the L?-norm of the control u; can be estimated by

||U1||2L2(0,T) < ;2H110||2L2(0,L)a
where C' is the same constant obtained in the observability inequality (2.4)).
Proposition 8. System (1.1)) is null controllable with uy = 0 if and only if there exists C > 0 such that

L T T
/O o), [2dz < C / (el [2dt + / (ot Pt ) | (2.5)

for each o1 € L*(0, L), where ¢ is the solution of the adjoint system (2.3)) associated to pr € L*(0,L).

As before, the L?-norm of the controls us and uz can be estimated by

2 2 2
[uallZ2(0,7) + lusllzzo,m) < 57||?JOHL2(0,L),
where C is the same constant obtained in the observability inequality (2.5)).
Therefore, to prove Theorems|[l]and[3] it is sufficient to establish estimates like (2.4) and (2.5), respectively,
with a suitable constant C'.

3. CARLEMAN ESTIMATES FOR THE ADJOINT SYSTEM

This section is devoted to two Carleman estimates for the adjoint equation (2.3). These inequalities are
essential to prove Theorems [I] and

3.1. Carleman estimate with observation at x = 0. Let us introduce the weight function

B(x)
w, (t,if) S Q7 (31)

where [ is a strictly positive, strictly increasing and concave polynomial of degree 2. To ease the notation
we define

at,z) =

p(t) :==t7V2(T —1t)"V2 t € (0,T).
The Carleman estimate is the following one.

Proposition 9. There exists positive constants C, Cy, Cy and C3 independent of €, L, s and M € R such
that for any o1 € L?(0, L) we have

T
C<// L455p56725a|g0|2dxdt+// L253p36250‘|g012dzdt) S/ Lspef%a‘”:“|<pm‘z:0|2dt, (3.2)
Q Q 0

for any s > CLTY2L=1/2e=1/2 4 CoT L' /2| M|Y/? + C3T L2, where ¢ is the solution of ([2.3) associated
to or.

Remark 10. Although it appears that C; and Csy are fixed here, these constants will play a role as parameters
in the proof of Theorem

The inequality follows directly from the one developed by Glass and Guerrero [10, Proposition 3.1] by
considering the case of null diffusion coefficient and with p(t) = ¢t #(T — t)~* for p € [1/2,1]. Nevertheless,
here we choose explicitly the power pu = 1/2, which is the optimal one for the Korteweg-de Vries equation
and crucial for the proof of the Theorem

Proof of Proposition |§|. Now we shall prove the Carleman estimate ([3.2)) using a standard procedure due
to Fursikov and Imanuvilov [7].
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Weight function. Consider « as in (3.1)) and let B(x) = —ax? + bLx + cL? be an strictly positive, strictly
increasing and concave polynomial of degree 2. Then a, b and ¢ are positive real numbers and « must satisfy
the following inequalities in @

Licp<a<L*(—a+b+c)p, Lb—2a)p < a, < Lbp, ape = —2ap.

In addition we impose that b > 2a. Concerning to the time derivatives, by using 2 < Tp we get the following
estimates

lag] < %(b +c—a)TL*p?, |ag| < gTLpB, |t < aTp?, |ag| < %(b +c—a)T?L?p°.
Conjugate operator. Let us define Ly := @i + €prpe — Mp,. For s > 0, set ¢ = e”**p and introduce the
conjugate operator Py = e **L(e**1)). Consider the decomposition of Py = L1 + Lo1) + Rip given by
L19 = s + U + 3852 (a) 29y — My,
Lot = e5° ()’ + Besuthar + 5041 + 3e50022100 — Msa1),
RY = eS0ppz® + 36820zz04m;¢.
Taking the L%-norm in @Q to £1v + Lyt = Pt — Ra) we obtain

1L19l2a ) + L2622 +2 //Q LabLovdudt = [Py — Ry|2aq,

from which it follows

//Q LyvLovdadt < P20y + [RV|2: 0 (3.3)

Computation of the double product term. Let us denote by I;; for 1 <i < 4,1 < j <5 the L?-product in Q
between the ith term of £1v with the jth term of Lo1). Integration by parts are performed and each resulting
expression for I;; is listed below.

First, we will compute ((L£1%)1, L2v) 12(q)-

e Using the null boundary conditions and the fact that ag.. =0

9 3T
I, = 55253 // aiam|wm|2da:dt — 62%/ ailmL\wﬂI:L\dedt — 36283 // aiw\w\Qdmdt.
Q 0 Q

e Here we only integrate by parts
T

3 3 r 3
Iis = —7523// am|wm|2dwdt + 7523/ S L |2dt — *828/ ax‘1:0|wm|1:0\2dt.
2" JIo 27 /s 27 /s

e Again, using the null boundary conditions and that az., =0
3 9 s [T 9
I3 = 553 || “dadt — 85 fy_p [g),_, |7dt.
Q 0

Integrating by parts, using that a,.. =0 and ¢, ) = pz|,_, = 0 we get

T
I, = —3625// am|wm|2dmdt+3ezs/ Upzlyey Vaaloer Valoep dL.
Q 0

Using that oy, = 0, we compute the last term

3 ) M (T )
Iis = —553M g |[Vs|“ ddt +557 |y |V, |7 dL.
Q 0

Now we will concern about the term ((£1v)2, L29) 12(¢)-
e Integrating by parts with respect to t we get

3s° 9 9
I = 767 o O || “ dadt.
Q
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e Here using that v,|,_, = ¥z|,_, = 0, we obtain

I :sig // Q| dzdt — 3es // Qgpthptbpdadt.
2 Jlq Q

e Again using that ¢,_, = 1|,_,. = 0 we have

I3 = 75// a2 dadt.
Q

The following term will cancel out with the last term of 5o

Iy = 365// Qi dxdt.
Q

e Again, we use ¢|,_, = v|,_, = 0 to obtain

Ms
125 = 7// OLTt|’l/)|2dIdt
Q

Now we compute the third term ((L£1%)3, L29) 12(Q)-

Using the null boundary conditions

I3 = ——E s // ) Qe [0 2 .
Using that v, _, =0

27
I32 7*6283// Oéx amx‘¢z| dﬂfdt+ 8 / i\x:L|wﬁf‘m:L|2dt'

From the identity (a;a2), = a0 + 20,0, and integration by parts we obtain

3 3
I35 = —Z&4° // @2 Y| dxdt — ~es® // Q| |2 dadt.
2 Q 2 Q

The fourth term is given by
34 = 96283// (0t )%t [t |2 dzdlt.
Q

Iss = §M553// (p) %ot [¥)* dadt.
Q

Finally

Now, we compute inner product of the fourth term ((£1v)4, L29) 12(@)

e We integrate by parts once to obtain
3
L = —5533M// (p) 2 a2 dacdt.
Q

e Integrating by parts and using ¢, _, =0

3 3 T
Iy = 5gsM// [V |2 dacdt — 5gsM/ oy [V, |2l
Q 0

e Using the null boundary conditions

Ly = fM// i) 2dedt.
2 Ja

Ly = —3esM // Q|| 2 dcdt
Q

e The fourth term is given by
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S
Lis = 7§M2// [V |2 dadt.
Q

Gathering the terms. Putting all together the distributed terms and the boundary terms we have

1
D(y) = 5 g2 5// ) g |t Pdadt — s s// Q| V| P dt
—38283// aiz|w|2daﬁdt—3533// 2 Y| dadt — 7553// Q0 g [P dacdt
Q Q 2 Q
+3M653//(ozx)zam|w|2d9:dtfs// oztt|1/)|2d:cdths// Q[P dadt
Q Q Q
M M?
+3€5// Qat|the | dxdt — 3—55// Q|00 |2 dd6 — —5// e [V |2 dadt,
Q 2 Q 2 Jla

T

e Finally

T T
3 ]
BL(w) = 45283 / aih:L |¢ZE|.7::L |2d$dt + 5528/ af‘:c:L |¢II‘.T,:L |2dt - 55 / atlm:L |¢$|m:L |2dt
0 0 0

T T
+ 3628/(; O‘a:xlw=L¢w\w=L1r/)xw\x=Ldt + 2M€8/0 Ogl._p |1,/)I|$=L |2dt

and

3 T
BO('@[J) = _5525/0 a$|m:0|¢xf£‘m:()|2dt'

Distributed terms. We shall use systematically the estimates developed in the previous subsection about the
weight function «. Concerning the dominating terms of D(¢)) we have that

1
— ?55255// (op ) e [0 ddt — 3525// Qe |V |2 ddt
Q Q
> 15a(b—2a)4// 52L4s5p5|¢|2dxdt+9a// £25p|tpe|Pdadt.  (3.4)
Q Q

In order to deal with the first order terms above, we integrate by parts and use the null boundary conditions
to obtain

(b — 2a)* // L2s3 p31ppppdadt = —(b — 2a)? // L2553 p34pppipdadt
Q Q

By using Young’s inequality we obtain that

6a(b—2a)2// Lzssps\wz|2dxdt§a(b—2a)4// L4s5p5\w|2dxdt+9a// 5P| Vpe |2 dadt.
Q Q Q

Then from (3.4) and the above inequality it follows that

1
5 g2 5// Q) am|w| dxdt — 75 8// Qo [V |2 ddt
> 14a(b — 2a)* // 2L |w|2dxdt+6a(b72a)2// 21253 p3|ab, |2 dadt.
Q Q

Since p~! < T/2, for the remaining terms we get

—35233// a3 |wPdzdt > 0,
Q

3
3es® // e L] dxdt‘ §

e2L*s p° [y dadt,

Q
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// 2118 p° [y |2 dadt,

3 T M|
3Mes® 20 |02dzdt| < Zab? // 21465 5|2 dadt
atest ] (P opasat] < Sor g ] s o,

3

§533// Q0 Qe [ dxdt’ —(b+c—a) ab
2= Jlo 2

3 T2
2 2745 5,2
a dxdt -(b+c—a)——5— L*s°p dxdt
tt|¢| X ‘ ( c ) 25234//8 S |1p| xat,

b T3 M|
Ms// Y|P da dt‘ < // L1 p|y|*ddt,
‘ 8 L32st ]

355// Qt| Vg dxdt’ 2

T2\ M
’zss// |V |2 dt’ i L2| |// e2L?s%p? iy [P dadt,

,73// am|@/}m\ dxdt > 0.

Gathering the above estimates we obtain

D(1)) > Do(s // L*s°p° [y dxdt + Dy (s // L?s3p® |4, |2 dadt,

21253 p3 b, |2 dudt,

where
3, T 3 T 2|M\T2 3 T2 b T3|M|
Do(s) = 1da(b — 2a)* — §b Te2 5(6—1— c— a)abL€82 — 5 T f(b—i— c— a)L25254 YR
T 3 T2|M|
D = 6a(b — 2a)* — fb
1) = 6af a)’ 2 Les? 4% T2es?
In order to handle Dy and Dy, from now on we consider s fulfilling
s> C\TV2L71V2e= Y2 4 0y TL e M|Y2? 4+ CsTL 2, (3.5)
where C1, Co > 0 and C5 > 0 will be choosen later. Note that this choice of s implies
T T 1T 1
Les? = O} L2es? =~ C%’ L2%s — C3
and hence, we get the following estimates
3 3 1 3 1 3 1 b 1
D > 14a(b—2 77b2—77b b— — —ab®>= — =(b —a)=5 — = =55
o(s) = Malb = 20)" = 5b* 7 = 5 (bt ¢~ )by = 5ab"g = 30+ e~ r ~ Sy
3.1 3 1

Dy (s) > 6a(b — 2a)* — 2bC2 — 190
3
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Boundary terms. Observe that the term By is precisely the observation at = 0, therefore we have to estimate
the terms at x = L. Concerning to the dominating first order term of By we obtain

T T
45253/ a§|z=L|waj|z:L|2dtZ4(b—2a)3/ 2Ly, [Pt
0 0

Now estimating the remaining terms of B;, we get

s T
55/ O‘tlm=LW}x|m=L‘2dt
0

1 T,
<j0re—a s [ RIS, Pt
0

eLs?

Here we use that 2|uv| < u? + v? to obtain

T
< 3528/ |a$$|w=L‘ |¢w\w=L|\/ aw\$=L|www\w=L|dt
0 \/ar|m:L

a? T2 T 3 T
/ 52L383p3|wr|m:L|2dt+ 5523/ am|m:L|wm‘m:L|2dt
0 0

o P
— (b—2a) L*s?

Observe that dominating second term of By, (¢) will cancel out with the last term of the above inequality at

the very of the proof. For the last term

T
3528/ aww\w=L¢x|m=wam|w=Ldt
0

|M]|T?

< 2(b—2a) T2es2

T T
2M€s/ am|m:L|wm|m:L|2dt / 82L38303\¢z|m:L\2dt.
0 0

Gathering the above inequalities we get

T
B, L) > By(s) / L350 iy, [Pt

0

where
1 T a? T2 |M|T?
— _ 3 _ = _ _ _ _
Bi(s) = 4(b — 2a) 4(() +c—a) T2 3(b ~9a) Ts? 2(b— 2a) To.a7
Since s satisfies (3.5)), we get
1 1 a® 1 1
Bi(s) > 4(b—2a) — ~(b+c—a)—5 —3————— —2(b— 2a)—.

Choosing the polynomial. In what follows C' will be a generic positive constant independent of €, L, s and
M. If we fix C1, Co <1 and Cj large enough as needed, it is easy to construct some quadratic polynomial
yielding positive constants Dy, D; and By, take for instance 3(x) = —2? + 4Lx + L2. Then we readily get

D(¢) > C<52// L4s5p5|w|2d:cdt+52// L233p3|¢12dzdt)
Q Q

Residue term. From the previous discussion we deduce the following inequality

and By, (y) > 0.

3 T
2// Elwﬁgz/}dxdt+§523/ Vo [V o [Pt
Q 0

> C<52// L4s5p5|¢|2dxdt+e2// L3s3p3|wm2dxdt>. (3.6)
Q Q

Since . = 0, for the residue term we have
T
IR¥|2(q) = 36%s" //Q ()" a2t < O //Q 2 LAS5 Pl Pdadt,

which can be absorbed by the left-hand side of (3.6)) since s > C3TL~2.
From (3.3)) we obtain

T
0(52 //Q LA 0P| Pdadt + &2 //Q L%Spwu?d:cdt) < P2 + <25 / Qo |traal,_oPdt,  (3.7)
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for all s satisfying (3.5]).

Conclusion. Recall that ¢ = e™**p. First of all, since ¢|,_, = ¢,|,_, = 0 we obtain that
W)wc\m:o'z = 672sa|90x:c\$:0|2

which implies directly

T T
/ (77—t sz\mzopdt = / azlmzoe_%alw:U |9‘7mr\¢:o|2dt~
0 0
On the other hand, we have the estimate
e < O(s°p?[9)? + [ ]?).

Then (3.7)) implies

C (// L4s5p5e_28("|ap|2dxdt+// L253p3e_2m|g0w2dmdt>
Q Q

T
1Pl + | Lope 1 P (35)
0

| —

<

[

€

Since Py = 0, from (3.8) we get the desired inequality for ¢.

3.2. Carleman estimate with observation at x = L. We consider the same structure of weight function
introduced previously, but here we suppose that [ is a strictly positive, strictly decreasing and concave
quadratic polynomial. With this modification we obtain the following Carleman estimate for the adjoint
system with observation at x = L.

Proposition 11. There exists positive constants C, Cy, Cy and C5 independent of €, L, s and M € R such
that for any o1 € L*(0, L) we have

C’(// L4s5p5e_250‘|<p|2dxdt+// L253p3e_250‘|90w2da:dt>
Q Q
T T
g/ L353p3e_28a|w:L\(pz|m:L\2dt—|—/ Lspe_zsalw:L\(,DM|IZL|2dt7 (3.9)
0 0

for any s > CLTY2L=1/2e=1/2 4 CoTL e /2| M|Y/? + C3T L2, where ¢ is the solution of [2.3) associated
to 7.

Proof of Proposition The proof is essentially the same as Proposition [J] therefore we point out the
main differences.

Weight function. Let a be as in (3.1)) with 8(z) := —ax? — bLx + cL? an strictly positive, strictly decreasing
and concave polynomial of degree 2. Then a, b, ¢ are positive real numbers and a must satisfy the following
inequalities in @

L*(c—a—Dbp<a<L’yp, —L(2a+b)p < oy < —Lbp, aze = —2ap.

Also we impose that ¢ > a + b. Concerning to the time derivatives, using 2 < Tp we have the following
estimates

(2a+b)
2

c . 3
|| < §TL2 %, o < TLP®, |auae| < aTp?, |au| < ZCTQLQPS-
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Distributed terms. Similar computations as in the proof of Proposition [J] lead us to

D(p) > Dy(s // L5 pP || dadt + Dy (s // L33 p3 |9, | dadt, (3.10)
where
3 3 |M|T? 3 T? (2a + b) T3| M|
Dy(s) = 14ab* — =(2a + b)3 20+ b Za(2a + b)? — = -
o(s) “ 2( a+b) L (20 + )L882 2 a(2a+b) [2c52  4°L2:242 8  L3e254’
T 3 T?|M|

3
2
D;(s) = 6ab —7(2 +b) Tew? " 1922
Let s fulfilling

5> O TY2L7Y2e712 4 CoT L 1eY2 | M|Y2 + CsTL 72, (3.11)

where C1, Co > 0 and C3 > 0 will be chosen later. This choice of s implies that

3 3 1 3 1 (2a+b 1
Do(S) Z 14ab4— 5( +b) 0712—?)@0(2@4—())02 — 5&(2a+b)20722—1007? _T@’
3 3 1
Di(s) > 6ab® — 2 (2a — Za—s.
(s) > 6ab 2( —|—b)C2 4a022

Boundary terms. Observe that By(x) is a positive since —a, > 0. In the same way, the dominating first
order term at x = L is negative

T T
0> 45253/ ai|I:L|wx|m:L|2dxdt > —C/ 2L p? iy, _, [P dadt.
0 0

Straightforward estimates implies
T T
B <C ([ L0 Pt [ s Pt ).

Residue term. Let C3 > 0 be large enough as needed. Then from the previous estimates we deduce the
following inequality

T T
2/ ﬁlwcgwd:cdH/ €2L3s3p3|wm|m:L|2dt—l—/ e Lspthyy),_, |Pdt
Q 0 0

>C (52 // LAs° pP || dadt + €2 // L353p3|1/)r|2dxdt> . (3.12)
Q Q
Now, since oy, = 0 we have that

T
IRYII72(q) = 3¢s* //Q (@2)* (0 )* ¢ Pddt < C 75 //Q e?L's®p° | P dud,
which can be absorbed by the left-hand side of (3.12)) since s > C3TL~2. From (3.3) we obtain

C(// L4s5p5|w|2dmdt+// L2s3p3|¢m2dxdt>
Q Q

1 T . T
< SIPUle + [ B P+ [ Laplna Pl (313)

for all s satisfying (3.11]).

Conclusion. The conclusion follows as in the proof of Proposition @D, by using that ¥ = e **p together
with the boundary conditions of ¢ and the properties of the weight function a.

4. UNIFORM COST OF THE NULL CONTROLLABILITY

This section is devoted to prove Theorems [lf and 3} mainly following the ideas used in [I0, Theorem 1.1].
To that end, we will first obtain some inequalities for the solutions of the adjoint system (2.3]).
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4.1. Exponential dissipation. Here we obtain an exponential dissipation inequality for the solutions of
by replicating the proof given in [I0, Proposition 3.2]. Although the dissipation inequality obtained in
[10] is still valid for equation , the novelty is that, here we slightly improve the constant appearing on the
exponential upper bound of the dissipation with respect to the one established there and coincides with the
one obtained in [8, Proposition 6], which is based on the fundamental solution of the equation v; 4+ evy4. = 0.
Furthermore, it is consistent with both the results from [I0] and [8] in the amount of time required to have
an exponential dissipation. In that sense, the following estimate seems optimal.

Proposition 12. Let T >0,e >0 and M > 0. Let 0 <ty <ty <T such that to —t1 > L/M. We have the
following decay property:

L 3/2 L
2 (Mt —t1) — L)%/
2 _ 2
/0 lo(ty, z)] dxgexp{ 33 2t )12 /0 lo(ta, x)|*de, (4.1)
or any solution ¢ of the adjoint system (2.

f luti f the adjoi (12.3)

Proof. Let us consider the multiplier exp{r(M (T —t) — x))}¢, where r > 0 will be chosen below. Then,
integrating in (0, L) and integrating by parts with respect to z, we have

L 7,.3 L
—e [ el MT = 0) - e)}ppunads = = [ explr(M(T — 0) - 2)} o

3er [ 5
+ 5 /0 exp{r(M(T —t) — x))}.|"dz + 5 exp{r(M(T 1) = L))} pa|.—. 2
and
L Mr (L
M [ esplr (T 1) = a)ppsde = 25 [ exp{r(M(T —1) =)o

From the last identity we deduce
L 1d [ ,
/ exp{r(M(T —t) — 2))}p(=pt + Mpg)de = =5 | exp{r(M(T —t) — 2))}|¢l"dz.
0 0
Putting together the above computations and using that ¢ satisfies (2.3) we get

L

, L
g (d | ewtr (@ =)~ a)Yieldo +r* [ exp{r(M(T—t)—x))}de)

dt

3 3 L
= —56767“ (T—=1) (37‘/ exp{r(M(T —t) — x))}p.|*dx + exp{r(M(T —t) — L)}z, 2) .
0

The previous identity allows us to deduce the differential inequality

d L
% (exp{—arg(T—t)}/ eT(M(Tt)x))hpzda:) <0,
0

for t € (0,T). By considering 0 < t; < to < T such that to — t; > L/M, integrating between ¢; and to the

above differential inequality

L L
/ lo(t, 2)|dz < exp{e(ty — t1)r® — (M(ty — t1) — L)r}/ lo(ta, )| da.
0 0
Denoting by K = K (r) the exponential factor appearing in the above inequality, we observe that the quantity
o (M —t) — L 1/2

3E(t2 — tl)

minimizes K (r). Therefore K achieves its minimum at
2 (M(ty —t1) — L)3/?

3\/3 61/2(t2 7751)1/2

and the conclusion follows. O

K~ :exp{—
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4.2. Proof of Theorem The goal here is to prove an observability inequality like (2.4]). Let @ =
[nT, kT x [0, L], where 1/2 < n < k < 1 will be chosen later. Also we consider s fulfilling the assumptions of
the Carleman estimate, namely,

s=C\TY2 L2 Y2 L CyTL e 2P MY2 4 CsT L2, (4.2)
where C7, Cy and C5 will be chosen later on. In what follows, C' will represent some positive constant

independent of ¢, L, s and M.

4.2.1. Observability inequality. Let 3(x) = —ax® + bLx + cL? be as in (3.1)) with a, b, ¢ > 0. We have that

alt,r) < g(k)(b+c— CL)L?2 (4.3)

for all (t,z) € Q, where g(x) := (k(1 — ))~*/2. On the other hand, the inequality e® > 2™ /m!, which holds
for all z > 0 and m € N, along with the fact that a(t,0) = cL?p(t) implies

1 /s m 3 ;2
2sa(t,0) 212 cL?sp(t)
‘ = m! (20L p(t)) e '

The choice of m = 1 in the above inequality combined with the fact that p > 2/T and (4.3)), allows us to
deduce from the Carleman estimate (3.2) that

T
25L4£e—29(n)(b+c—a)sL2/T | |2dxdt < ge—3csL2/T | |2dt
T5 @ 2 =T o @xm\mzo .

By the relation

S 1

T1/2M1/2
T = 2T L

<01L_1/2 + Oy I

) + C3L_2

we readily get inequality

T
//~ lo|?dxdt < CL® exp { (20(k)(b+ ¢ — a) — 3c) (C’1L3/2 + Cng/QLMl/Q) } / Pl dt. (4.4)
Q 0

Now we suppose that T > 0 satisfies nT' > L/M for some 7 > 0 to be chosen and let ¢t € [nT,kT]. By
taking t; = 0 and t5 = t in Proposition [12] we get

L _7)\3/2 L
2 (Mt-1L)
2 2
/0 l(0,2)|*dx < exp {3\/3 /31 } /0 lo(t, )| *dx

2 (nMT — L)%\ [*
S exp{s\/g 61/2H1/2T1/2 A |g0(t,l')|2d$ (45)

Integrating (4.5)) in [T, xT] and using (4.4)) we obtain the observability inequality

L 5 T
L K(T)
2 2
A ‘So‘t:0| d‘rL. S C T eXp {51/2T1/2 }/0v |SO$I|T:0‘ dt (46)

where
2
T):= (2 —a)— L3 4+ CoTY?LMY?) — —=— (nMT — L)*/2
K(T) := (2g(k)(b+ c — a) — 3¢) (Cl +Cs ) V3R (n )
4.2.2. Explicit time. Now let T = 7L/M where 7 > 1/n. Then
K(rL/M) = L3/? [(2g(n)(b +c—a)—3c) (Cl + 0271/2> - L(T’I] —1)3/2
3\/351/2

The idea now is to choose the parameters in such a way that the negative part of IC counteracts its positive
part to obtain K < 0. However, this choice has to ensure that the Carleman estimate holds. Then, in
order to choose the polynomial 8 together with the parameters C;, Cy and C5, we introduce the following
constraint functions

3.1 3 1 3 .1 3 1 b 1
b,c,Cy,Cy) = 1da(b—2a)* — 2P = — 2(b+c — a)ab—s — “ab®—= — (b+ ¢ — @)= — - ———
g1(a,b, ¢, C1, Cp) = 1a(b = 20)7 = 3 C? plb+e—aa cz 22 g0t “)Cf 8 C2C2
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3.1 3 1
2
gg(a, b, C, Cl, 02) = 6(1([) - 2@) - 560712 - 1(107%,
1 1 a? 1 1
b =4(b—2a)>—=(b —a)— —3——— —2(b—2a)—=
93((13 70701702) ( CL) 4( +c 0)012 3(b—2a) C?? ( a)C227
ga(a,b,¢,C1,C5) = b — 2a,
and then we consider the following nonlinear optimization problem
i 4b + ¢ — 4a)?*(C? + C2 4.7
e i (4b+ ¢ — 4a)”(CT + C3) (4.7)

where
X ={(a,b,c,C1,Cs) € ]Ri 291 >0, g2>0, g3>0, g4 >0and Cy,Cy < 1}.

The minimization problem is a proposal to reduce the effect of the positive part, where the objective
function minimizes simultaneously the factors accompanying 7° and 7/2. Observe that we replace s — 9(k)
by its lower bound 2 to obtain the objective function, which in such case only depends on the parameters
coming from the Carleman estimate. The constraints in X ensures that the obtained polynomial is eligible
as a weight function. On the other hand, to increase the effect of the negative part of IC, we will choose n
and k, as large and small as possible, respectively. Since n < &, the difference between them must be small.
It is worth mentioning that any other proposal of such 1 and s does not improve the result obtained for 7.

Now, if we fix C3 = 107/2, we obtain the following approximated solution of

a=0.4768, b=4.2744, ¢ =0.01, C; = 1/2, Cy = 1/4.0622.

By inspection one can see that by choosing n = 0.76 and x = 0.7601, the map 7 — K(7L/M) is decreasing
in [23.25, +00) and satisfies

K(23.25L/M) < —CL%/2,

By the above observation we have that K(rL/M) < K(23.25L/M) for 7 > 23.25. Using the standard HUM
method, from (4.6 we arrive the desired inequality (|1.2]).

4.3. Proof of Theorem The proof is essentially the same as the proof of Theorem |1} that is, we will
prove an observability inequality like (2.5). Let @ := [nT, kT x [0, L], where 1/2 < n < k < 1 will be chosen
later and consider s fulfilling the assumptions of the Carleman estimate.

4.3.1. Observability inequality. As was pointed out previously, let 3(x) = —ax? — bLx + cL? be an strictly
positive, strictly decreasing concave polynomial with a, b, ¢ > 0. Then we have
L2
a(t,z) < g(n)c? (4.8)
for all (t,z) € Q, where g(k) = (k(1 — £))~/2. On the other hand, for all m € N the following inequality
holds
1 S m 2
2sa(t,L) (2, 2 3(c—a—b)L*s/T
e > - (2(0 a—>b)L p(t)) e ,
for all ¢t € (0,T). By choosing m = 1 and m = 3 in the above inequality, when applied with (4.8) to the
Carleman estimate (3.9)) we get

: 2 —3(c—a—b ,
//~ |p*dudt < O(L* + L°) exp { e (01L3/2 + C2T1/2LM1/2) }
Q

c1/271/2
T T
/0 (ot Pt + / (Punto, Pt ) . (1.9)

Now we suppose that T > 0 satisfies nT° > L/M for some n > 0. Integrating the exponential dissipation
estimate (4.5) in [nT, kT] and using (4.9) we obtain the observability inequality

L 3 5 T T
I3+ L K(T)
[ mataese (55 o (BT} ([ ot [[omnara) o
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where

K(T) = (20(k)c — 3(c —a— b)) (C1L3/2 + Cle/QLMl/Q) . (WMT — L)¥/2.

2
3\/351/2
4.3.2. Ezplicit time. Here, we follow the same approach as in Section adapted to Carleman esti-
mate (3.9). Let T'=7L/M where 7 > 1/n. Then

K(rL/M) = L3/? [(29(5)0 —3(c—a—10)) (Cl + 0271/2) - (rn —1)%/2].

2
3\/§/@1 /2
Let define the constraints

gl( 7b, C, 01702) 14ab4 2(20, + b)30712 - 3&6(2@ + b)cilz - *ZCL(QCL-F b)27022 —_ - —Cil — 77012022’
(abcC’ CY)—GCLbQ—§(2(l"‘b)i—§ai
g2(a,0,¢, 0y, L 2 012 C%’

g3(a,b,¢,C1,C3) =c—a—b,
and then consider the following nonlinear optimization problem

! Ba+3b+ %01+ C 111
(a,b7c,ICI'111,Ié2)eX( a+ +C) ( 1 + 2) ( )

where
X = {(a,b,c,C1,C2) €R5 : g1 >0, g2 >0, g3 >0and Cp,Cy < 1}.
An approximated solution for this problem is
a=0.7283, b =5.463, ¢ =6.1919, C; = 1/3.2538, Cy = 1/6.1279.

By inspection one can see that choosing n = 0.76 and x = 0.7601, the map 7 — K(7L/M) is decreasing in
[24.31, 4+00) and satisfies

K(24.31L/M) < —CL%/2,

By the above observation we have that K(7L/M) < K(24.31L/M) for 7 > 24.31. Using the classical duality
result, from (4.10) we arrive the desired inequality (|1.3) and the conclusion follows.

Remark 13. It is not directly clear whether or not the proposed optimization problems (4.7) and (4.11)) admit
a solution due to the nature of the constraints. In this regard, the existence of solutions of both problems
was obtained numerically.

4.4. Some comments about the method. The method employed to obtain the minimal parameter 7,
where T = 7L/M, is not optimal in the sense that the Carleman estimates does not provide sharp estimates
on the constants, so we cannot expect to obtain an optimal result nor make a conjecture of which would be such
minimal 7. From [I0, Theorem 1.4], the cost of null controllability explodes exponentially if 7 < 1. However,
it is an open problem to know what is the behavior of the cost of null controllability when 7 € [1,23.25) with
uy being the active control, and when 7 € [1,24.31) with controls ug and us.

In view of the results obtained by Glass [9] for the vanishing diffusion heat equation y: — ey, + My, = 0,
the moments method is a good approach to the problem. However, the steady-state operator associated
to equation does not admit a well-behaved spectral decomposition. Up to our knowledge, the last
improvement for the minimal time of uniform null controllability for this case, was obtained by Lissy [13],
with a proof based on the link between the cost of the controls of the heat equation y; — y,, = 0 and the cost
of the null controllability for the vanishing diffusion heat equation. In the same way, Lissy [I5] also obtained
the best known upper bound for the explosion time of the cost of null controllability.

In the case of dispersive equations, Lissy [I4] based on the moment method, studied the cost of fast controls
of a family of dispersive equations, obtaining as a consequence results for a Korteweg-de Vries equation with
periodic boundary conditions. For the equation with u1 = uo = 0 and ¢ = 1, M = —1 under the
assumption that T > Ty(L) > 0 and a right Neumann control, Krieger and Xiang [I1] studied the cost of
controllability, but not providing information about the behavior of fast controls, namely, when T'— 0. The
possibility of linking the cost of fast controls of some Korteweg-de Vries equation with the cost of the null
controllability of equation is an interesting problem.
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5. APPLICATION TO A FOURTH-ORDER PARABOLIC EQUATION
Let T, L > 0. Here we consider the following linear equation

Yt + EYzaax + Myw = 07 (t,l‘) € Q7
y(t,0) =wui(t), y(t,L) =0, te€(0,T), (5.1)
yibz(t, 0) - u2(t)7 yl‘l‘(t7 L) = O, t E (0’ T)7 '
y(0,z) =yo(z), =€ (0,L),

where ¢ > 0 and M € R\ {0} are the diffusion and the transport coefficients, uy, uy are the controls and yq
is the initial condition.

The control system was studied by Carreno and Guzmaén [3], where by using an exponential dissipation
inequality together with a suitable Carleman estimate, the uniform null controllability is established. More
precisely, the cost of null controllability goes to 0 when ¢ — 0%, provided that T > 40L/M with M #
0. Adapting the approach of the present article we can improve the time from which the uniform null
controllability holds, and then reformulate [3, Theorem 1.2].

For this purpose, we consider the weight function

 —0.46922 + 6.592L + 0.01L2
oft, z) = 11/3(T — 1)1/3

We also consider C; = 1/3.5, Cy = 1/6.941, C3 = 107/? and the cut interval Q= [0.807T,0.8071T] x (0, L).
Let V := H? N H}(0,L) and denote by V* its dual space, by identifying L?(0, L) with itself.

, (t,x) € Q.

Theorem 14. Let T > 32.66L/|M| with M # 0. For every yo € L%(0, L), there exists (uy,uz) € L?(0,T)?
such that the unique solution (defined by transposition) y € C([0,T); V*) of (b.1) satisfies y(T,-) =0 in V*.
Moreover, there exists C', ¢ > 0 both independent of €, T, L and M such that

falZaco e + lalZaom < & (EEE Y exp d e 222
ilizzo,r) T 1212201y = 3 T XP =y [ WollLzo.Ly:
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